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A Bit of History

➤ Lewis Carroll (Charles L. Dodgeson)
Born in Cheshire in 1832.
Died in Guildford in 1898.

➤ Double first in Mathematics from Christ
Church, Oxford.

➤ Deacon, lecturer, librarian, and
published researcher.

Alice Through the Looking Glass
Jeanne Argent
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His Papers

Three papers in Nature

➤ ‘To find the Day of the Week for any
Given Date’

➤ ‘Brief Method of Dividing a Given
Number by 9 or 11’ (As Dodgeson)

➤ ‘Abridged Long Division’
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The Question

Why is a Raven like a Writing Desk? - Mad Hatter
(Alice in Wonderland 1865)
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Previous Answers

➤ Because (Edgar Allen) Poe wrote on both. [Sam Loyd]

➤ The higher the fewer. [Stephen King - The Shining]

➤ Because they both have inky quills.

➤ Because they can produce notes, though they are very flat.

➤ Neither are ice cream.

These are not mathematically precise - we can do better!
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Doughnuts and Coffee Cups

Topologists have a similar problem -
they cannot distinguish between
doughnuts and coffee cups!

A coffee cup can be continuously
deformed into a doughnut and vice
versa, when they are interpreted as
surfaces. Let’s see why...
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Topological Spaces

A topological space is a set X equipped with a collection τ of (open)
subsets of X, such that

➤ ∅ ∈ τ and X ∈ τ

➤ Ui ∈ τ for all i ∈ {1, 2, · · ·n}, n ∈ N then
⋂n

i=1 Ui ∈ τ
(Finite intersections of open sets are open)

➤ Ui ∈ τ for all i ∈ I then
⋃

i∈I Ui ∈ τ
(Arbitrary unions of open sets are open)

A topological space is called Hausdorff if, for any two x, y ∈ X with
x ̸= y, there exists open subsets U, V ∈ τ such that x ∈ U , y ∈ V ,
and U ∩ V = ∅.
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Euclidean Topology

The Euclidean topology on Rm has open sets given by unions and
intersections of open balls

B(x, r) = {y ∈ Rm | d(x, y) < r}

where x ∈ Rm and r > 0.

The map d : Rm × Rm → R is the Euclidean metric

d(x, y) =

√√√√ m∑
i=1

(yi − xi)2

The Euclidean topology is Hausdorff.
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Maps Between Topological Spaces

Let (X, τ) and (Y, σ) be topological spaces.

A homeomorphism f : X → Y is a bijective function which preserves
topology:

➤ All open sets in X are mapped by f to open sets in Y .

➤ All open sets in Y are mapped by f−1 to open sets in X.

Equivalently, a homeomorphism is a bijective function where both f
and f−1 are continuous in the appropriate sense.
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Homeomorphic Spaces

Two topological spaces are called homeomorphic if there exists a
homeomorphism between them.

Being homeomorphic is an equivalence relation:

➤ (Reflexivity) A space is homeomorphic to itself, with f the
identity.

➤ (Symmetry) If f : X → Y is a homeomorphism, so is
f−1 : Y → X.

➤ (Transitivity) If f : X → Y and g : Y → Z are homeomorphisms
then g ◦ f : X → Z is a homeomorphism.
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Surfaces

A (topological) surface is a Hausdorff topological space X, such that
for each point x ∈ X, there exists an open set U ⊆ X, which is
homeomorphic to an open subset of R2 with Euclidean topology.

Surfaces ‘look locally like R2’ so are two dimensional objects.

A surface is called compact if, for every collection of open sets which
covers the surface entirely, there is a finite sub-collection which also
covers the whole surface.
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Embeddings and Subspace Topology

➤ Let (Y, σ) be a topological space with A a subset of Y .

The subspace/ induced topology on A is defined by

σA = {A ∩ U |U ∈ σ}

➤ For (X, τ) a topological space and (A, σA) a subspace of (Y, σ):

If there exists a homeomorphism f : (X, τ) → (A, σA), then
(X, τ) is said to be (continuously) embedded in (Y, σ).

➤ In this case, one can consider (A, σA) in place of (X, τ).
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Subspace Topology in Rm

Here R3 has the Euclidean topology consisting of open balls.
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A Note on Embeddings

➤ Recall a surface is defined abstractly - it does not necessarily
live in another space.

➤ While some surfaces can be embedded in R3, this is not true in
general.

➤ (Whitney Embedding Theorem) Smooth (manifold) surfaces can
be smoothly embedded in R4.

➤ For surfaces embedded in Rm, compactness is equivalent to
closed boundedness (Heine–Borel Theorem).
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Non-examples of Compact Surfaces

➤ R2 itself is a surface, but is not compact as it is not bounded
(it is closed, however).

➤ The Möbius strip (without boundary) is a surface, but is not
compact.

➤ A graph over a closed subset of R2 is not a surface as for points
on the boundary, no open neighbourhood looks like an open
subset of R2.

➤ A graph over an open subset of R2 is a surface, but is not closed
and therefore not compact.
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Non-examples of Compact Surfaces

Let U ⊆ R2 and consider the graph of a function f : U → R.



TORUS Talk

Lewis Napper

1. Stating the
Problem

2. Equivalent
Surfaces

2.1 Some Topology

2.2 Examples of
Surfaces

2.3 Classifying
Compact Surfaces

3. A Solution?

The Basic Compact Surfaces

➤ 2-Sphere S2.

➤ 2-Torus T2.

➤ Real Projective Plane RP2.

S2 and T2 both embed in R3 and are closed and bounded, hence
compact.

RP2 embeds smoothly in R4 (not R3) and is closed and bounded
there.
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Compact Surfaces

Basic compact surfaces are obtained by identifying sides of a square:
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Connected Sums

Compact surfaces can be constructed from the previous basic objects
via the following surgery:

➤ Take two compact surfaces and remove an open disc from each.

➤ Join the two openings via an open ended cylinder.

The connected sum of two copies of RP2 is a Klein Bottle.

The connected sum of two T2 is a compact surface with two holes.
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Compact surfaces can be constructed from the previous basic objects
via the following surgery:
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All of the Compact Surfaces

All compact surfaces are homeomorphic to a sphere, a connected sum
of toruses, or a connected sum of projective planes.

Some comments:

➤ Removing an open disc from S2 leaves a closed disc, so the
connected sum of a compact surface and S2 leaves the former
unchanged.

➤ The connected sum of T2 and RP2 is homeomorphic to the
connected sum of three copies of RP2.
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Orientable Surfaces

A surface X is orientable if no open subset of X is homeomorphic to
the Möbius strip.

Intuitively, this says that if you pick a point on a surface and travel
in any fixed direction, if you return to your initial point, you will be
facing the same way.

Both S2 and T2 are orientable, while RP2 is a Möbius strip with a
disc glued to its edge and is therefore not orientable.
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Orientable Surfaces

➤ Orientability is preserved under homeomorphism.

➤ The connected sum of compact surfaces is orientable if and only
if the individual surfaces are all orientable.

➤ With our definitions, a compact surface is orientable if and only
if it embeds into R3.

➤ Hence, a connected sum of compact surfaces embeds into R3 if
and only if the individual surfaces embed in R3.

➤ Surfaces homeomorphic to the sphere or connected sum of
toruses embed into R3, while connected sums of RP2 do not.
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Distinguishing Compact Surfaces

We know whether or not a compact surface is homeomorphic to a
connected sum of RP2 depending on if it can be realised in R3 or not.

We now need a way of distinguishing between compact surfaces
which are homeomorphic to the sphere and those which are
homeomorphic to connected sums of toruses.
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Genus of a Compact Surface

The genus of a compact surface embedded in R3 is loosely defined by
the number of holes the surface has.

More precisely, the genus corresponds to the maximum number of
simple, closed, disjoint curves (circles) that can be drawn on the
surface without disconnecting it.

List of genera:

➤ Genus of S2 is 0

➤ Genus of T2 is 1

➤ Genus of connected sum of n copies of T2 is n
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Classification of Compact Surfaces

A compact surface embedded in R3, is defined up to homeomorphism
by its genus.

That is, the genus is preserved under homeomorphism, hence two
compact surfaces are homeomorphic if and only if they have the
same genus.

We can therefore determine whether a homeomorphism exists
between compact surfaces by calculating their genera.
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Doughnuts and Coffee Cups 2

In particular, a coffee cup has genus 1, hence must be homeomorphic
to T2, which describes a ring doughnut. (A coffee cup is not
homeomorphic to a Berliner, which has genus zero)
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Modelling a Raven

So what is the genus of a raven?

➤ First we must assume that the raven is hollow, such that it can
be modelled by a compact surface (it is finite and closed).

➤ The nervous/ cardiovascular systems would be in the hollowed
regions, so we can disregard these.

➤ The respiratory system is a continuous surface along the inside
of the trachea and into the lungs.

➤ The digestive system is simplified to one tube from ingress to
egress.

So a raven has genus 1!
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Genus of a Writing Desk

Genus 0 Genus 1 Genus 3
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Extension of Genus

... Genus can be extended to open surfaces by patching their
boundaries with a disc.
... It can be extended to non-orientable surfaces...
... One can define the Euler characteristic also...
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