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PDEs as Manifolds

➤ k-th Jet Bundle Jk(M,N) is space of all
possible values of x, y,D1y, · · ·Dky
[Ehresmann 1951, Bryant et al. 1991]

➤ k-th order PDE F (x, y,D1y, · · ·Dky) = 0
can be seen as the space E ⊂ Jk(M,N) of
points satisfying equation.

➤ Solutions ψ :M → N are submanifolds
L ⊂ E , e.g. F (x, ψ(x), D1ψ, · · ·Dkψ) = 0.

➤ Properties of geometry tell us about
properties of equation and solutions.

x

y

−1

3x2(1 + y) = 0 consists of
two lines, each of which is

a solution.
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1. Monge–Ampère Geometry
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What are Monge–Ampère Equations?

➤ MAE: non-linear, second-order PDE, given by quasi-linear
combinations of the minor determinants of the Hessian of ψ:

Hess(ψ) =


ψx1x1 ψx1x2 · · · ψx1xn

ψx2x1 ψx2x1 · · · ψx2xn
...

... · · · ...

ψxnx1 ψxnx2 · · · ψxnxn


➤ Quasi-Linear: coefficients can depend on x, ψ and D1ψ non-linearly.

➤ k-th Minor Determinant: determinant of the k × k sub-matrix with
entries given by intersections of k rows and columns.
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MAEs in Two Dimensions

➤ In two dimensions, MAEs take the form

Aψx1x1 + 2Bψx1x2 + Cψx2x2 +D
(
ψx1x1ψx2x2 − ψ2

x1x2

)
+ E = 0 .

where A,B, . . . E can depend on x1, x2, ψ, ψx1 , ψx2 non-linearly.

➤ If A,B, . . . E do not depend on ψ, we have a Symplectic MAE.

➤ Symplectic MAEs can be encoded in T ∗M rather than J2(M,N).
where M is the Configuration Space.
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Some Examples You May Know

➤ 2D Reaction-Diffusion: ψαψxx + [αψα−1ψx − ψt + F (ψ)] = 0.

➤ 3D Chynoweth–Sewell: [ψxxψyy − (ψxy)
2] + ψzz = 0.

➤ 4D Khokhlov–Zabolotskaya: ψtt + ψyy + ψzz − ψxt + (ψt)
2 = 0.

➤ Laplace: ∆ψ := ψx1x1 + ψx2x2 + · · ·+ ψxnxn = 0.

➤ Wave: □ψ := ψtt − ψx1x1 − ψx2x2 − · · · − ψxnxn = 0 .
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Geometry to Equation: A Quick Example

Consider a 2-form on T ∗R2 (with coordinates x1, x2, q1, q2):

α = dq1 ∧ dx2 − dq2 ∧ dx1 .

Define Lψ := {(x1, x2, ψx1 , ψx2)} ⊂ T ∗R2 (fix q1 and q2 at each x).

α|Lψ = d(ψx1) ∧ dx2 − d(ψx2) ∧ dx1

= (ψx1x1 + ψx2x2) dx
1 ∧ dx2

So α|Lψ = 0 if and only if ∆ψ = 0, i.e. ψ solves ∆ψ = 0.
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Symplectic Forms and Non-Uniqueness

A Symplectic form ω on T ∗Rm is

➤ a 2-form: skew-symmetric and bilinear,
➤ Closed: dω ≡ 0,
➤ Non-Degenerate: ω(X, ·) ≡ 0 if and only if X ≡ 0.

The canonical choice is

ω = dqi ∧ dxi =

(
0m −Im
Im 0m

)
Then ω|Lψ = 0 is trivial, so α|Lψ = 0 and (α + F (x, q)ω)|Lψ = 0 are the
same equation! Which one do we pick?



Pre Viva
Presentation

Lewis Napper

Preamble

1. Monge–Ampère
Geometry

2. Geometry of 2D
Incompressible Fluid
Flows

3. Towards Higher
Monge–Ampère
Equations

Conclusions

Effective Forms and Equivalence Classes

➤ An m-form α on T ∗Rm is called ω-Effective if α ∧ ω = 0.

➤ For symplectic form ω, every m-form β on T ∗Rm decomposes as

β = α + ω ∧ β0 ,

for some unique (m− 2)-form β0 and ω-effective m-form α
[Hodge–Lepage–Lychagin].

➤ This defines equivalence classes [α] where the only effective form is α
and β|Lψ = 0 is equivalent to α|Lψ = 0.
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Monge–Ampère Structures

➤ A Monge–Ampère Structure on T ∗Rm is a pair (ω, α), where ω is a
symplectic form and α is an ω-effective m-form [Banos 2002].

➤ In 2D with ω canonical, the ω-effective forms are

α = A dq1 ∧ dx2 +B (dx1 ∧ dq1 + dq2 ∧ dx2)

+ C dx1 ∧ dq2 +D dq1 ∧ dq2 + E dx1 ∧ dx2

➤ These α are in bijection with MAEs: α|Lψ = 0 is precisely

Aψx1x1 + 2Bψx1x2 + Cψx2x2 +D
(
ψx1x1ψx2x2 − ψ2

x1x2

)
+ E = 0 .
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Classical and Generalised Solutions

➤ A Classical Solution ψ ∈ C∞(Rm) corresponds
to Lψ = {x,D1ψ(x)} with α|Lψ = 0.

➤ A Generalised Solution of a MAS is an
m-dimensional submanifold L ⊂ T ∗Rm s.t.
ω|L = 0 and α|L = 0.

➤ If projection π : L→ Rm is not
– surjective, ψ not defined on whole domain.
– injective, ψ is multivalued [Vinogradov 1970].
– immersive, ψ is singular [Arnold 1990].
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The Pfaffian (2D)

➤ The Pfaffian is defined by α ∧ α =: fαω ∧ ω where
fα = AC −B2 −DE.

➤ Here, fα is the determinant of the coefficient matrix of the
linearisation of α|Lψ = 0.

➤ Hence, the Monge–Ampère equation α|Lψ = 0 is

elliptic ⇔ fα > 0.
hyperbolic ⇔ fα < 0.
parabolic ⇔ fα = 0.
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Almost (Para-)Complex Structure (2D)

➤ Set α̃ = 1√
|fα|

α, so that fα̃ = sign(fα).

Up to sign, multiples of α have the same α̃ (removes scaling).

➤ Define endomorphism of vector fields J : X(T ∗R2) → X(T ∗R2) by

α̃(· , ·) =: ω(J · , ·)
(
J = ω−1α̃ as matrices

)
,

➤ fα ≶ 0 ⇔ J2 = ±I4 and tr(J) = 0 [Lychagin et al. 1993]

https://bit.ly/3CLVqPk
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The Lychagin–Rubtsov Theorem (2D)

MAEs are locally equivalent if there exists a (local) symplectomorphism
F : (T ∗R2, ω, α1) → (T ∗R2, ω, α2), i.e.

F ∗ω = ω and F ∗α2 = α1 .

The following conditions are equivalent [Lychagin et al. 1993]:

➤ α|Lψ = 0 is locally equivalent to □ψ = 0 or ∆ψ = 0.

➤ d(α̃) = 0 (with fα ≶ 0).

➤ J is integrable (with J2 = ±I2).

These criteria do not always hold.
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Lychagin–Rubtsov Metrics (2D)

➤ Picking a non-degenerate, ω-effective, and α-effective 2-form K, we
can define a symmetric, bilinear form

ĝ(· , ·) := −K(J · , ·)

called a Lychagin–Rubtsov metric [Napper et al 2023].

➤ Up to conformal scaling of K, a choice of ĝ corresponds to a choice
of almost (pseudo-)quaternionic structure on T ∗R2. There is an
Sp(1) ∼= S3 of choices [Thesis].
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2. Geometry of 2D Incompressible Fluid Flows



Pre Viva
Presentation

Lewis Napper

Preamble

1. Monge–Ampère
Geometry

2. Geometry of 2D
Incompressible Fluid
Flows

3. Towards Higher
Monge–Ampère
Equations

Conclusions

Incompressible Navier–Stokes

➤ Homogeneous, Incompressible Navier–Stokes on Rm

∂tv
j = −vi∇iv

j −∇jp+ ν∆vj (−cj) ,
∇iv

i = 0 .

➤ Taking the divergence of the first and applying the second:

ζijζ
ij − SijS

ij = ∆p (+∇ic
i) .

where ζij =
1
2
(∇jvi −∇ivj) is the vorticity form

and Sij =
1
2
(∇jvi +∇ivj) is the strain-rate tensor.
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Pressure Equation in Two Dimensions

➤ In 2D, there exists a stream function ψ ∈ C ∞(R2) such that
v1 = −ψx2 and v2 = ψx1 .

➤ Function dictates the direction of a particle dropped into the flow.

➤ Substituting this into Navier–Stokes, ∇iv
i = 0 is trivially satisfied and

the pressure equation becomes an MAE for ψ:

∆p = 2
(
ψx1x1ψx2x2 − (ψx1x2)

2
)
.
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Known Result: The Q-Criterion

➤ ζijζ
ij − SijS

ij = ∆p = 2 (ψx1x1ψx2x2 − (ψx1x2)
2).

➤ Q-criterion [Weiss 1991, Larchevêque 1993]:
Vorticity dominates ⇔ ∆p > 0 ⇔ Elliptic equation.
Strain dominates ⇔ ∆p < 0 ⇔ Hyperbolic equation.
No dominance ⇔ ∆p = 0 ⇔ Parabolic equation.

Based on Figure from Clough et al. 2014
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Known Result From Geometry: Q-Criterion

➤ The pressure equation is given by the 2-form [Roulstone et al. 2009]

α = dq1 ∧ dq2 −
∆p

2
dx1 ∧ dx2 .

➤ Pfaffian is fα = 1
2
∆p

➤ Hence, the Q-criterion is recovered from the geometry:

elliptic ⇔ fα > 0 ⇔ ∆p > 0 ,

hyperbolic ⇔ fα < 0 ⇔ ∆p < 0 ,

parabolic ⇔ fα = 0 ⇔ ∆p = 0 .
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Extras From Geometry: Lychagin–Rubtsov Theorem

➤ For α̃ = 1√
|fα|

α, we find dα̃ = 0 if and only if ∆p is constant.

➤ Hence, by the Lychagin–Rubtsov Theorem,

∆p

2
= (ψxxψyy − ψ2

xy)

is locally equivalent to ∆ψ = 0 or □ψ = 0 iff ∆p is constant.

➤ So this equivalence only applies to some (relatively uninteresting)
problems.
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Extras From Geometry: Lychagin–Rubtsov Metric

➤ There is a Lychagin–Rubtsov metric on T ∗R2 given by

ĝ =

(∆p
2
I 0

0 I

)
.

➤ When pulling back to a classical solution Lψ, we find

ĝ|Lψ = ζ

(
ψxx ψxy
ψxy ψyy

)
where ζ = ∆ψ is the vorticity.
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Summary of Relationship

∆p > 0 < 0 = 0

Dominance Vorticity Strain None

α|Lψ = 0 Elliptic Hyperbolic Parabolic

fα > 0 < 0 = 0

J2 −I2 I2 Singular

ĝ Riemannian (4, 0) Kleinian (2, 2) Degenerate*

ĝ|Lψ Riemannian (2, 0) Kleinian (1, 1)** Degenerate*

*These degeneracies are curvature singularities.

**The ζ = 0 degeneracy may occur here and be removable.
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2D ABC Flow: ψ(x, y) = 3
2 cos(y) + sin(x) = −ζ
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Extension to Riemannian Manifolds

➤ On a Riemannian manifold (M, g), the approach is similar:

∆p+
1

2
R|v|2 (+∇ic

i) = ζijζ
ij − SijS

ij .

➤ Schematically take
dqi → ∇qi := dqi − dxjΓij

kqk.
I → g.
fα = 1

2
∆p→ fα = 1

2
∆p+ 1

4
R|v|2.

➤ Vorticity/strain dominance ⇔ sign(fα) ⇔ type(α|L = 0)

Pfaffian justifies Q-criterion hold on manifolds (e.g. S2, basin).
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3. Towards Higher Monge–Ampère Equations
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An Alternative Approach in 2D

➤ Rather than stream function ψ, work with velocity directly and
consider solutions Lv = {(x, y, v1(x, y), v2(x, y))}.

➤ α|Lv = 0 gives Poission equation for pressure in terms of vorticity and
strain, but now ω|Lv = 0 requires vanishing vorticity (bad!).

➤ Use a different symplectic form:

ϖ = ∇qi ∧ ⋆gdxi

= dq1 ∧ dx2 − dq2 ∧ dx1

where ϖ|Lv = 0 gives ∇iv
i = 0.
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Higher MA Structure For Fluids

The 2-forms ϖ, α generalise in m dimensions to (m− 1)-plectic m-forms

ϖ = ∇qi ∧ ⋆g dxi

α = 1
2
∇qi ∧∇qj ∧ ⋆g (dxi ∧ dxj)− fα volM

With Lv = {(xi, vi(x))}, the equations ϖ|Lv = 0 and α|Lv = 0 are

∇iv
i = 0

∆p+Rijvivj = ζijζ
ij − SijS

ij

the divergence free equation and Poisson equation respectively.
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Geometry of Higher Dimensional Fluids

➤ (ϖ,α) not an MAS for m > 2, but can define and study metrics on
T ∗M and Lv as before.
Signature and curvature are related to vorticity and strain.

➤ Can obtain topological information using Gauß–Bonnet theorem (2D)
and helicity (3D)

➤ (ϖ,α) admits Hamiltonian reduction relating incompressible 3D flows
with symmetry to compressible 2D flows with MAS [Blacker 2023].
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Some Questions... (Ongoing Work)

➤ If not an MAS, what is (ϖ,α) for m > 2 and what types of equations
do these correspond to?

➤ Can we write a Lychagin–Rubtsov theorem to classify these
equations?

➤ LR theorem uses the structure α = J ¬ϖ but this isn’t defined for
our (ϖ,α) for m > 2 — when is J defined and why?
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Partial Higher Lychagin–Rubtsov Theorem

➤ An m-form ϖ on T ∗M and endomorphism J on X(T ∗M) are
compatible if, for all k = 1, · · ·m,

ϖ(JX1, X2, · · ·Xm) = ϖ(X1, · · · JXk, · · ·Xm)

➤ For (m− 1)-plectic form ϖ and compatible almost (para-)complex
structure J , then J is integrable iff α := J ¬ϖ is closed.

➤ In order to complete the theorem, we require the following:
– Effectiveness: when does (ϖ,α) define almost (para-)complex J?
– Pfaffian: what equations are we equivalent to and when?
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Steps Forward In Three Dimensions

➤ Let eijk = ei ∧ ej ∧ ek. Non-degenerate 3-forms in 6 dimensions (on
T ∗M) look like (1), (2), or (3) in some basis {ei}6i=1 [Bryant. 2006]

(1) e123 + e456

(2) e136 + e426 + e235 + e145

(3) e135 + e416 + e326

➤ A pair of non-degenerate 3-forms (ϖ,α) from different classes cannot
define almost (para-)complex J . What about in the same class?

➤ Our fluid dynamical forms were not from the same class — is there an
F such that (ϖ,α+ Fϖ) are in the same class in general?
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Summary

➤ Introduced Monge–Ampère geometry as a tool for studying PDEs.

➤ Discussed application of these techniques to two-dimensional
incompressible fluids, replicating and extending the Q-criterion for
dominance of vorticity and strain.

➤ Showed how the MAS could be extended to higher dimensional flows
and hinted at application of reduction to better understand topology.

➤ Presented initial steps to classifying higher MAS such as the Poisson
and divergence-free equations in three dimensions.
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Outlook

➤ Can we complete the higher Lychagin–Rubtsov theorem and what
equations are we (locally) equivalent to?
What are ‘effectiveness’ and the ‘Pfaffian’ in this setting?

➤ Is it possible to encode dynamics of fluids as well as kinematics?
Could the vorticity equation

∂tζ +∇(ζ · v)− ν∆ζ = 0

be used as a flow equation over time t for solutions L?

➤ Could we consider generalised solutions of the Poisson equation?
These represent weather fronts in [D’Onofrio et al. 2023].
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Thank you!

Any questions?
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