Geometric Techniques in PDE Theory and Fluid Dynamics

Lewis Napper

University of Surrey, UK 13th February 2025

Pre Viva Presentation Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

PDEs as Manifolds

- ▶ <u>k-th Jet Bundle</u> $J^k(M, N)$ is space of all possible values of $x, y, D^1y, \cdots D^ky$ [Ehresmann 1951, Bryant et al. 1991]
- k-th order PDE F(x, y, D¹y, · · · D^ky) = 0 can be seen as the space E ⊂ J^k(M, N) of points satisfying equation.
- ► Solutions $\psi: M \to N$ are submanifolds $L \subset \mathcal{E}$, e.g. $F(x, \psi(x), D^1 \psi, \cdots D^k \psi) = 0$.
- Properties of geometry tell us about properties of equation and solutions.

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

- 1. Monge-Ampère Geometry
- 2. Geometry of 2D Incompressible Fluid Flows
- 3. Towards Higher Monge-Ampère Equations

Conclusions

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

1. Monge–Ampère Geometry

Pre Viva Presentation Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

What are Monge–Ampère Equations?

> <u>MAE</u>: non-linear, second-order PDE, given by quasi-linear combinations of the minor determinants of the <u>Hessian</u> of ψ :

$$\operatorname{Hess}(\psi) = \begin{pmatrix} \psi_{x^{1}x^{1}} & \psi_{x^{1}x^{2}} & \cdots & \psi_{x^{1}x^{n}} \\ \psi_{x^{2}x^{1}} & \psi_{x^{2}x^{1}} & \cdots & \psi_{x^{2}x^{n}} \\ \vdots & \vdots & \cdots & \vdots \\ \psi_{x^{n}x^{1}} & \psi_{x^{n}x^{2}} & \cdots & \psi_{x^{n}x^{n}} \end{pmatrix}$$

• Quasi-Linear: coefficients can depend on x, ψ and $D^1\psi$ non-linearly.

▶ <u>k-th Minor Determinant</u>: determinant of the $k \times k$ sub-matrix with entries given by intersections of k rows and columns.

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

In two dimensions, MAEs take the form

$$A\psi_{x^{1}x^{1}} + 2B\psi_{x^{1}x^{2}} + C\psi_{x^{2}x^{2}} + D\left(\psi_{x^{1}x^{1}}\psi_{x^{2}x^{2}} - \psi_{x^{1}x^{2}}^{2}\right) + E = 0.$$

where $A, B, \ldots E$ can depend on $x^1, x^2, \psi, \psi_{x^1}, \psi_{x^2}$ non-linearly.

- ▶ If $A, B, \ldots E$ do not depend on ψ , we have a *Symplectic* MAE.
- Symplectic MAEs can be encoded in T^*M rather than $J^2(M, N)$. where M is the Configuration Space.

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

- > 2D Reaction-Diffusion: $\psi^{\alpha}\psi_{xx} + [\alpha\psi^{\alpha-1}\psi_x \psi_t + F(\psi)] = 0.$
- > 3D Chynoweth–Sewell: $[\psi_{xx}\psi_{yy} (\psi_{xy})^2] + \psi_{zz} = 0.$
- ► 4D Khokhlov–Zabolotskaya: $\psi_{tt} + \psi_{yy} + \psi_{zz} \psi_{xt} + (\psi_t)^2 = 0.$
- ► Laplace: $\Delta \psi \coloneqq \psi_{x^1x^1} + \psi_{x^2x^2} + \dots + \psi_{x^nx^n} = 0.$

► Wave:
$$\Box \psi \coloneqq \psi_{tt} - \psi_{x^1x^1} - \psi_{x^2x^2} - \cdots - \psi_{x^nx^n} = 0$$
.

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

Consider a 2-form on $T^*\mathbb{R}^2$ (with coordinates x^1, x^2, q_1, q_2):

$$lpha = \mathsf{d} q_1 \wedge \mathsf{d} x^2 - \mathsf{d} q_2 \wedge \mathsf{d} x^1$$
 .

Define $L_{\psi} \coloneqq \{(x^1, x^2, \psi_{x^1}, \psi_{x^2})\} \subset T^* \mathbb{R}^2$ (fix q_1 and q_2 at each x).

$$\begin{aligned} \alpha|_{L_{\psi}} &= \mathsf{d}(\psi_{x^{1}}) \wedge \mathsf{d}x^{2} - \mathsf{d}(\psi_{x^{2}}) \wedge \mathsf{d}x^{2} \\ &= (\psi_{x^{1}x^{1}} + \psi_{x^{2}x^{2}}) \,\mathsf{d}x^{1} \wedge \mathsf{d}x^{2} \end{aligned}$$

So $\alpha|_{L_{\psi}} = 0$ if and only if $\Delta \psi = 0$, i.e. ψ solves $\Delta \psi = 0$.

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

Symplectic Forms and Non-Uniqueness

A Symplectic form ω on $T^*\mathbb{R}^m$ is

- ➤ a 2-form: skew-symmetric and bilinear,
- \blacktriangleright <u>*Closed*</u>: $d\omega \equiv 0$,
- <u>Non-Degenerate</u>: $\omega(X, \cdot) \equiv 0$ if and only if $X \equiv 0$.

The canonical choice is

$$\omega = \mathsf{d}q_i \wedge \mathsf{d}x^i = \begin{pmatrix} 0_m & -I_m \\ I_m & 0_m \end{pmatrix}$$

Then $\omega|_{L_{\psi}} = 0$ is trivial, so $\alpha|_{L_{\psi}} = 0$ and $(\alpha + F(x, q)\omega)|_{L_{\psi}} = 0$ are the same equation! Which one do we pick?

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

Effective Forms and Equivalence Classes

- ► An *m*-form α on $T^*\mathbb{R}^m$ is called $\underline{\omega}$ -Effective if $\alpha \wedge \omega = 0$.
- ► For symplectic form ω , every *m*-form β on $T^*\mathbb{R}^m$ decomposes as

$$\beta = \alpha + \omega \wedge \beta_0$$

for some unique (m-2)-form β_0 and ω -effective m-form α [Hodge–Lepage–Lychagin].

This defines equivalence classes $[\alpha]$ where the only effective form is α and $\beta|_{L_{\psi}} = 0$ is equivalent to $\alpha|_{L_{\psi}} = 0$.

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

► A <u>Monge-Ampère Structure</u> on $T^*\mathbb{R}^m$ is a pair (ω, α) , where ω is a symplectic form and α is an ω -effective *m*-form [Banos 2002].

 \blacktriangleright In 2D with ω canonical, the $\omega\text{-effective forms are}$

 $\begin{aligned} \alpha &= A \, \mathsf{d} q_1 \wedge \mathsf{d} x^2 + B \left(\mathsf{d} x^1 \wedge \mathsf{d} q_1 + \mathsf{d} q_2 \wedge \mathsf{d} x^2 \right) \\ &+ C \, \mathsf{d} x^1 \wedge \mathsf{d} q_2 + D \, \mathsf{d} q_1 \wedge \mathsf{d} q_2 + E \, \mathsf{d} x^1 \wedge \mathsf{d} x^2 \end{aligned}$

▶ These α are in bijection with MAEs: $\alpha|_{L_{\psi}} = 0$ is precisely

$$A\psi_{x^{1}x^{1}} + 2B\psi_{x^{1}x^{2}} + C\psi_{x^{2}x^{2}} + D\left(\psi_{x^{1}x^{1}}\psi_{x^{2}x^{2}} - \psi_{x^{1}x^{2}}^{2}\right) + E = 0$$

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

Classical and Generalised Solutions

► A Classical Solution
$$\psi \in C^{\infty}(\mathbb{R}^m)$$
 correspondent
to $L_{\psi} = \{x, D^1\psi(x)\}$ with $\alpha|_{L_{\psi}} = 0$.

- ► A <u>Generalised Solution</u> of a MAS is an *m*-dimensional submanifold $L \subset T^* \mathbb{R}^m$ s.t. $\omega|_L = 0$ and $\alpha|_L = 0$.
- ► If projection $\pi: L \to \mathbb{R}^m$ is not
 - surjective, ψ not defined on whole domain.
 - injective, ψ is multivalued [Vinogradov 1970].
 - immersive, ψ is singular [Arnold 1990].

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

The Pfaffian (2D)

- The <u>*Pfaffian*</u> is defined by $\alpha \wedge \alpha =: f_{\alpha}\omega \wedge \omega$ where $f_{\alpha} = AC B^2 DE$.
- ► Here, f_{α} is the determinant of the coefficient matrix of the linearisation of $\alpha|_{L_{\psi}} = 0$.
- ► Hence, the Monge-Ampère equation $\alpha|_{L_{\psi}} = 0$ is *elliptic* $\Leftrightarrow f_{\alpha} > 0$. *hyperbolic* $\Leftrightarrow f_{\alpha} < 0$. *parabolic* $\Leftrightarrow f_{\alpha} = 0$.

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

Almost (Para-)Complex Structure (2D)

Set
$$\tilde{\alpha} = \frac{1}{\sqrt{|f_{\alpha}|}} \alpha$$
, so that $f_{\tilde{\alpha}} = \operatorname{sign}(f_{\alpha})$.
Up to sign, multiples of α have the same $\tilde{\alpha}$ (removes scaling)

▶ Define endomorphism of vector fields $J : \mathfrak{X}(T^*\mathbb{R}^2) \to \mathfrak{X}(T^*\mathbb{R}^2)$ by

$$\tilde{\alpha}(\cdot, \cdot) \eqqcolon \omega(J \cdot, \cdot) \quad (J = \omega^{-1} \tilde{\alpha} \text{ as matrices}) ,$$

► $f_{\alpha} \leq 0 \iff J^2 = \pm I_4$ and tr(J) = 0 [Lychagin et al. 1993]

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

MAEs are *locally equivalent* if there exists a (local) symplectomorphism $F: (T^*\mathbb{R}^2, \omega, \alpha_1) \to (T^*\mathbb{R}^2, \omega, \alpha_2)$, i.e.

$$F^*\omega = \omega$$
 and $F^*\alpha_2 = \alpha_1$.

The following conditions are equivalent [Lychagin et al. 1993]:

►
$$\alpha|_{L_{\psi}} = 0$$
 is locally equivalent to $\Box \psi = 0$ or $\Delta \psi = 0$.

- ► $d(\tilde{\alpha}) = 0$ (with $f_{\alpha} \leq 0$).
- ► J is integrable (with $J^2 = \pm I_2$).

These criteria do not always hold.

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

> Picking a non-degenerate, ω -effective, and α -effective 2-form K, we can define a symmetric, bilinear form

 $\hat{g}(\cdot\,,\cdot)\coloneqq -K(J\,\cdot\,,\cdot)$

called a Lychagin-Rubtsov metric [Napper et al 2023].

▶ Up to conformal scaling of K, a choice of ĝ corresponds to a choice of almost (pseudo-)quaternionic structure on T*ℝ². There is an Sp(1) ≅ S³ of choices [Thesis]. Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

2. Geometry of 2D Incompressible Fluid Flows

Pre Viva Presentation Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

▶ Homogeneous, Incompressible Navier–Stokes on \mathbb{R}^m

$$\partial_t v^j = -v^i \nabla_i v^j - \nabla_j p + \nu \Delta v^j \left(-c_j\right),$$

$$\nabla_i v^i = 0.$$

► Taking the divergence of the first and applying the second:

$$\zeta_{ij}\zeta^{ij} - S_{ij}S^{ij} = \Delta p \ (+\nabla_i c^i) \,.$$

where $\zeta_{ij} = \frac{1}{2}(\nabla_j v_i - \nabla_i v_j)$ is the vorticity form and $S_{ij} = \frac{1}{2}(\nabla_j v_i + \nabla_i v_j)$ is the strain-rate tensor. Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

Pressure Equation in Two Dimensions

▶ In 2D, there exists a <u>stream function</u> $\psi \in \mathscr{C}^{\infty}(\mathbb{R}^2)$ such that $v^1 = -\psi_{x^2}$ and $v^2 = \psi_{x^1}$.

- ► Function dictates the direction of a particle dropped into the flow.
- Substituting this into Navier–Stokes, $\nabla_i v^i = 0$ is trivially satisfied and the pressure equation becomes an MAE for ψ :

$$\Delta p = 2 \left(\psi_{x^1 x^1} \psi_{x^2 x^2} - (\psi_{x^1 x^2})^2 \right) \,.$$

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

Known Result: The Q-Criterion

$$\succ \zeta_{ij}\zeta^{ij} - S_{ij}S^{ij} = \Delta p = 2\left(\psi_{x^1x^1}\psi_{x^2x^2} - (\psi_{x^1x^2})^2\right).$$

▶ Q-criterion [Weiss 1991, Larchevêque 1993]: Vorticity dominates $\Leftrightarrow \Delta p > 0 \Leftrightarrow$ Elliptic equation. Strain dominates $\Leftrightarrow \Delta p < 0 \Leftrightarrow$ Hyperbolic equation. No dominance $\Leftrightarrow \Delta p = 0 \Leftrightarrow$ Parabolic equation.

Based on Figure from Clough et al. 2014

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

Known Result From Geometry: Q-Criterion

➤ The pressure equation is given by the 2-form [Roulstone et al. 2009]

$$\alpha = \mathsf{d} q_1 \wedge \mathsf{d} q_2 - \frac{\Delta p}{2} \mathsf{d} x^1 \wedge \mathsf{d} x^2$$

► Pfaffian is
$$f_{\alpha} = \frac{1}{2}\Delta p$$

► Hence, the Q-criterion is recovered from the geometry:

elliptic $\Leftrightarrow f_{\alpha} > 0 \Leftrightarrow \Delta p > 0$, hyperbolic $\Leftrightarrow f_{\alpha} < 0 \Leftrightarrow \Delta p < 0$, parabolic $\Leftrightarrow f_{\alpha} = 0 \Leftrightarrow \Delta p = 0$. Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

Extras From Geometry: Lychagin-Rubtsov Theorem

► For
$$\tilde{\alpha} = \frac{1}{\sqrt{|f_{\alpha}|}} \alpha$$
, we find $d\tilde{\alpha} = 0$ if and only if Δp is constant.

➤ Hence, by the Lychagin-Rubtsov Theorem,

$$\frac{\Delta p}{2} = (\psi_{xx}\psi_{yy} - \psi_{xy}^2)$$

is locally equivalent to $\Delta \psi = 0$ or $\Box \psi = 0$ iff Δp is constant.

 So this equivalence only applies to some (relatively uninteresting) problems. Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

Extras From Geometry: Lychagin-Rubtsov Metric

▶ There is a Lychagin–Rubtsov metric on $T^*\mathbb{R}^2$ given by

$$\hat{g} = \begin{pmatrix} \frac{\Delta p}{2}I & 0\\ 0 & I \end{pmatrix}$$

> When pulling back to a classical solution L_{ψ} , we find

$$\hat{g}|_{L_{\psi}} = \zeta \begin{pmatrix} \psi_{xx} & \psi_{xy} \\ \psi_{xy} & \psi_{yy} \end{pmatrix}$$

where $\zeta = \Delta \psi$ is the vorticity.

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

Summary of Relationship

> 0

> 0

 $-I_2$

Vorticity

Riemannian (4,0)

Riemannian (2,0)

Elliptic

 Δp

 f_{α}

 J^2

 \hat{g}

 $\hat{g}|_{L_{\psi}}$

Dominance

 $\alpha|_{L_{\psi}}=0$

Pre Viva
Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

Conclusions

< 0

< 0

 I_2

Strain

Hyperbolic

Kleinian (2,2)

Kleinian (1,1)**

= 0

= 0

None

Parabolic

Singular

Degenerate*

Degenerate*

2D ABC Flow: $\psi(x, y) = \frac{3}{2}\cos(y) + \sin(x) = -\zeta$

 \hat{f}_2

-0.5

-1.0

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge-Ampère Equations

Conclusions

 E_{\perp} 2.0

-0.5

> On a Riemannian manifold (M, g), the approach is similar:

$$\Delta p + \frac{1}{2}R|v|^2 \ (+\nabla_i c^i) = \zeta_{ij}\zeta^{ij} - S_{ij}S^{ij} \,.$$

► Schematically take

$$\begin{aligned} \mathsf{d}q_i \to \nabla q_i &\coloneqq \mathsf{d}q_i - \mathsf{d}x^j \Gamma_{ij}{}^k q_k. \\ I \to g. \\ f_\alpha &= \frac{1}{2}\Delta p \to f_\alpha = \frac{1}{2}\Delta p + \frac{1}{4}R|v|^2. \end{aligned}$$

► Vorticity/strain dominance \Leftrightarrow sign $(f_{\alpha}) \Leftrightarrow$ type $(\alpha|_{L} = 0)$ Pfaffian justifies Q-criterion hold on manifolds (e.g. \mathbb{S}^{2} , basin). Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

3. Towards Higher Monge–Ampère Equations

Pre Viva Presentation Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

An Alternative Approach in 2D

- Rather than stream function ψ, work with velocity directly and consider solutions L_v = {(x, y, v₁(x, y), v₂(x, y))}.
- ► $\alpha|_{L_v} = 0$ gives Poission equation for pressure in terms of vorticity and strain, but now $\omega|_{L_v} = 0$ requires vanishing vorticity (bad!).
- ► Use a different symplectic form:

$$arpi =
abla q_i \wedge \star_g \mathsf{d} x^i$$

= $\mathsf{d} q_1 \wedge \mathsf{d} x^2 - \mathsf{d} q_2 \wedge \mathsf{d} x^2$

where $\varpi|_{L_v} = 0$ gives $\nabla_i v^i = 0$.

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

The 2-forms ϖ , α generalise in m dimensions to (m-1)-plectic m-forms

$$\varpi = \nabla q_i \wedge \star_g \mathsf{d} x^i$$
$$\alpha = \frac{1}{2} \nabla q_i \wedge \nabla q_j \wedge \star_g (\mathsf{d} x^i \wedge \mathsf{d} x^j) - f_\alpha \operatorname{vol}_M$$

With $L_v = \{(x^i, v_i(x))\}$, the equations $\varpi|_{L_v} = 0$ and $\alpha|_{L_v} = 0$ are

$$\nabla_i v^i = 0$$

$$\Delta p + R^{ij} v_i v_j = \zeta_{ij} \zeta^{ij} - S_{ij} S^{ij}$$

the divergence free equation and Poisson equation respectively.

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

Geometry of Higher Dimensional Fluids

- (ω, α) not an MAS for m > 2, but can define and study metrics on T*M and L_v as before.
 Signature and curvature are related to vorticity and strain.
- Can obtain topological information using Gauß–Bonnet theorem (2D) and helicity (3D)
- > (ϖ, α) admits Hamiltonian reduction relating incompressible 3D flows with symmetry to compressible 2D flows with MAS [Blacker 2023].

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

- ▶ If not an MAS, what is (ϖ, α) for m > 2 and what types of equations do these correspond to?
- Can we write a Lychagin–Rubtsov theorem to classify these equations?
- ► LR theorem uses the structure α = J ⊥ ∞ but this isn't defined for our (∞, α) for m > 2 — when is J defined and why?

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

Partial Higher Lychagin–Rubtsov Theorem

An *m*-form ϖ on T^*M and endomorphism J on $\mathfrak{X}(T^*M)$ are compatible if, for all $k = 1, \cdots m$,

$$\varpi(JX_1, X_2, \cdots X_m) = \varpi(X_1, \cdots JX_k, \cdots X_m)$$

- For (m-1)-plectic form ϖ and compatible almost (para-)complex structure J, then J is integrable iff $\alpha \coloneqq J \ \neg \varpi$ is closed.
- ► In order to complete the theorem, we require the following:
 - Effectiveness: when does (ϖ, α) define almost (para-)complex J?
 - Pfaffian: what equations are we equivalent to and when?

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

▶ Let $e^{ijk} = e^i \wedge e^j \wedge e^k$. Non-degenerate 3-forms in 6 dimensions (on T^*M) look like (1), (2), or (3) in some basis $\{e^i\}_{i=1}^6$ [Bryant. 2006]

1)
$$e^{123} + e^{456}$$

2) $e^{136} + e^{426} + e^{235} + e^{145}$
3) $e^{135} + e^{416} + e^{326}$

- A pair of non-degenerate 3-forms (ω, α) from different classes cannot define almost (para-)complex J. What about in the same class?
- ➤ Our fluid dynamical forms were not from the same class is there an F such that (\overline{\overlin{\verline{\overline{\overline{\overline

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

Conclusions

Pre Viva Presentation Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

- ► Introduced Monge–Ampère geometry as a tool for studying PDEs.
- Discussed application of these techniques to two-dimensional incompressible fluids, replicating and extending the Q-criterion for dominance of vorticity and strain.
- Showed how the MAS could be extended to higher dimensional flows and hinted at application of reduction to better understand topology.
- Presented initial steps to classifying higher MAS such as the Poisson and divergence-free equations in three dimensions.

Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

Outlook

- Can we complete the higher Lychagin-Rubtsov theorem and what equations are we (locally) equivalent to? What are 'effectiveness' and the 'Pfaffian' in this setting?
- Is it possible to encode dynamics of fluids as well as kinematics? Could the vorticity equation

$$\partial_t \zeta + \nabla(\zeta \cdot v) - \nu \Delta \zeta = 0$$

be used as a flow equation over time t for solutions L?

 Could we consider generalised solutions of the Poisson equation? These represent weather fronts in [D'Onofrio et al. 2023]. Pre Viva Presentation

Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

Thank you!

Any questions?

Pre Viva Presentation Lewis Napper

Preamble

1. Monge–Ampère Geometry

2. Geometry of 2D Incompressible Fluid Flows

3. Towards Higher Monge–Ampère Equations

