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PDEs as Manifolds o

Lewis Napper

Preamble

» k-th Jet Bundle J*(M, N) is space of all SRl

Geometry

possible values of z,y, D1y, --- D*y .
[Ehresmann 1951, Bryant et al. 1991] y Incompressible Fluid

Flows

3. Towards Higher

» k-th order PDE F(z,y, D'y, - D*y) =0 Mo
can be seen as the space £ C J¥(M, N) of
points satisfying equation.

Conclusions

» Solutions ¢ : M — N are submanifolds -

LCé&, eg F(x,¢(x), D%, - D) = 0.

322(1 + y) = 0 consists of
two lines, each of which is

» Properties of geometry tell us about a solution.
properties of equation and solutions.
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1. Monge—Ampere Geometry
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What are Monge—Ampere Equations?

» MAE: non-linear, second-order PDE, given by quasi-linear
combinations of the minor determinants of the Hessian of :

wwlxl ,lvz)aclzvz co ?/lea:n

HeSS(lﬂ) _ ¢x2x1 wxle cc pr%:"

wxnazl wx”xQ o wx"x”
» Quasi-Linear. coefficients can depend on z, 1 and D't non-linearly.

» k-th Minor Determinant: determinant of the k x k sub-matrix with
entries given by intersections of k& rows and columns.
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MAEs in Two Dimensions

» |n two dimensions, MAEs take the form

fimelml + 2Btg1a2 + Cigage + D (@bmlxl1bm212

—v

2
rlg2

)+E=0.

where A, B, ... E can depend on 2!, 22,1, 1,1, 1,2 non-linearly.

» If A B,...FE do not depend on %, we have a Symplectic MAE.

» Symplectic MAEs can be encoded in T* M rather than J?(M, N).

where M is the Configuration Space.
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Some Examples You May Know Presencaion
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Preamble

1. Monge—Ampeére
Geometry

» 2D Reaction-Diffusion: ¥*,, + [a¢a_l¢x — 9y + F ()] = 0. 2 eometry of 20

Flows

= . — 2 = owards Higher
» 3D Chynoweth—Sewell: {wzxwyy (wxy) ]+ ., =0. i)lo-r:ge—/;jln;:{éih
Equations

» 4D Khokhlov—Zabolotskaya: 1y + ¥y, + 1., — Yar + (1/;t)2 = 0. Conclusions

> Laplace: Aw = wxlxl + wxsz + .-+ wxnzn =0.
» Wave: Dw = Q/Jtt — djxlwl — 2/%2902 — 000 — 1/}xn$n =0.

%



Geometry to Equation: A Quick Example

Consider a 2-form on T*R? (with coordinates z*, 22, q1, ¢o):

a=dg Adz? —dg, Adz! .

Define Ly == {(a', 22, 1,1, ¢,2)} C T*R? (fix ¢ and g2 at each ).

|, = d(¥z) Ade® — d(t,2) A da!
= (Yp1g1 + Yy242) dz! A dz?

So alr, =0 if and only if Ay =0, i.e. ¥ solves Ay = 0.
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Symplectic Forms and Non-Uniqueness Prasantation
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A Symplectic form w on T*R™ is L Monge-Ampire
- eometry
» a 2-form: skew-symmetric and bilinear, 2. Geometry of 2D
| ible Fluid
» C(losed: dw =0, Flows
» Non-Degenerate: w(X,-) =0 if and only if X = 0. 3. Towards Higher
Monge-Ampere

Equations

Conclusions

The canonical choice is

; 0 —1,
=dg ANdz' = " "
w = dg; Adzx (Im Om)

Then w|z,, = 0is trivial, so o[z, = 0 and (a + F(z,q)w)|z, = 0 are the

same equation! Which one do we pick? 5




Effective Forms and Equivalence Classes Preenaton
Lewis Napper

Preamble

1. Monge—Ampeére

» An m-form a on T*R™ is called w-Effective if a A w = 0. Gemmmetiy

2. Geometry of 2D
Incompressible Fluid

» For symplectic form w, every m-form g on T*R™ decomposes as et
3. Towards Higher

Monge-Ampere
/B = + w /\ /80 , Equations

Conclusions

for some unique (m — 2)-form [, and w-effective m-form «
[Hodge-Lepage—Lychagin].

» This defines equivalence classes [a] where the only effective form is «
and 3|r, = 0 is equivalent to a|z, = 0.




Monge—Ampere Structures Presentaion
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2 o 5 . 1. Monge—Ampeére
» A Monge-Ampére Structure on T*R™ is a pair (w, ), where w is a e
symplectic form and « is an w-effective m-form [Banos 2002]. 2. Geometry of 2D

Incompressible Fluid
Flows

» |n 2D with w canonical, the w-effective forms are 3 Toaendb Higien
Monge-Ampere
Equations

a = Adql /\ d':CQ + B (dxl /\ dql + dq2 /\ dx2) Conclusions
+ Cdz! Adgs + Ddgy Adgs + Edat A dz?

» These a are in bijection with MAEs: «|r,, = 0 is precisely

Azt + 2BYgg2 + Chgage + D (wxlxlww%? = 1?51902) +E£=0.




Classical and Generalised Solutions Presentation
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qi 1. Monge—Ampere
) ) ~ m L:d\P Geometry
» A Classical Solution ¢ € C*°(R™) corresponds ) vt

to sz = {.T, D1¢(I)} W|th Oé|L1/) = (. | IFrlzsvr:pressible Fluid
- o . 3. Towards Higher
» A Generalised Solution of a MAS is an (e e

m-dimensional submanifold L € T*R™ s.t. « | -
wlr =0and a|, =0.

» If projection w: L — R™ is not
— surjective, 1 not defined on whole domain.
— injective, v is multivalued [Vinogradov 1970)].

— immersive, 1 is singular [Arnold 1990]. s;
i H : i




The Pfaffian (2D)

» The Pfaffian is defined by a A a = fow A w where
fo=AC — B?> — DE.

» Here, f, is the determinant of the coefficient matrix of the
linearisation of |y, = 0.

» Hence, the Monge—Ampere equation oy, = 0 is
elliptic < f, > 0.
hyperbolic < f, < 0.
parabolic & f, = 0.
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Almost (Para-)Complex Structure (2D)

» Set a = ﬁa, so that f5 = sign(f,).

Up to sign, multiples of o have the same & (removes scaling).
» Define endomorphism of vector fields J : X(T*R?) — X(T*R?) by
a(-,)=w(J-,) (J=w'a as matrices)

» fos0 & J? ==+, and tr(J) = 0 [Lychagin et al. 1993]
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https://bit.ly/3CLVqPk

The Lychagin—Rubtsov Theorem (2D)

MAEs are locally equivalent if there exists a (local) symplectomorphism
F: (T'R* w,ay) — (T*R?%,w, as), i.e.

Fo=wand Ffay, = oy .

The following conditions are equivalent [Lychagin et al. 1993]:
» alr, = 0 is locally equivalent to [y = 0 or Ay = 0.
» d(a) =0 (with f, <0).
» J is integrable (with J? = +1,).

These criteria do not always hold.
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Lychagin—Rubtsov Metrics (2D)

» Picking a non-degenerate, w-effective, and a-effective 2-form K, we
can define a symmetric, bilinear form

called a Lychagin—Rubtsov metric [Napper et al 2023].

» Up to conformal scaling of K, a choice of g corresponds to a choice
of almost (pseudo-)quaternionic structure on T*R2. There is an
Sp(1) = S3 of choices [Thesis].
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2. Geometry of 2D Incompressible Fluid Flows
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Incompressible Navier—Stokes Presentaton
Lewis Napper
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) . 1. Monge—Ampeére
» Homogeneous, Incompressible Navier—Stokes on R™ Geometry

2. Geometry of 2D
Incompressible Fluid

o’ = —v'Viv! — Vp+vAv (—¢j), Flows
1 3. T« ds High:
Vﬂ)l = 0 . Monig)\g—a/&l;p‘elljge o

Equations

Conclusions

» Taking the divergence of the first and applying the second:
GiiCY — 8i55¥ = Ap (+Vic').

where (;; = %(Vjvi — V,v;) is the vorticity form
and S;; = %(Vj'vi + V,v;) is the strain-rate tensor.




Pressure Equation in Two Dimensions Prasantation
Lewis Napper

Preamble

1. Monge—Ampeére

Geometry

: . 5
» In 2D, there exists a stream function 1) € €°°(R?) such that 2. Geometry of 2D
Ul — _ng? and U2 — ¢$1. ::r}zsgpressmle Fluid

3. Towards Higher

» Function dictates the direction of a particle dropped into the flow. pionge Ampere

Conclusions

» Substituting this into Navier—Stokes, V,v® = 0 is trivially satisfied and
the pressure equation becomes an MAE for :

Ap =2 (wxlx”pxza@ — (wx1x2)2) ¢
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Presentation

Known Result: The Q-Criterion

Lewis Napper
> gijcij - SijSij - Ap =2 (wwlxlwx2:c2 = (¢x1z2)2)- Preamble
1. Monge—Ampére
» Q-criterion [Weiss 1991, Larchevéque 1993]: :.e:::inyom
Vorticity dominates < Ap > 0 < Elliptic equation. Incompressible Fluid
Strain dominates < Ap < 0 < Hyperbolic equation. 5 Tt b
No dominance < Ap = 0 < Parabolic equation. pionge Ampere

Conclusions

Vorticity Divergence Strain

\

NS

Based on Figure from Clough et al. 2014




Known Result From Geometry: Q-Criterion

» The pressure equation is given by the 2-form [Roulstone et al. 2009]
A
a=dg Ndgy — Tdel Adx?.
» Pfaffian is f, = %Ap

» Hence, the Q-criterion is recovered from the geometry:

elliptic & f, >0< Ap >0,
hyperbolic < f, <0< Ap <0,
parabolic & f, =0 Ap=0.
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Extras From Geometry: Lychagin—Rubtsov Theorem

» For & = ——q, we find da = 0 if and only if Ap is constant.

VIl

» Hence, by the Lychagin—Rubtsov Theorem,

Sy
2 _

(%x%y o 23/)
is locally equivalent to Ay = 0 or Dy = 0 iff Ap is constant.

» So this equivalence only applies to some (relatively uninteresting)
problems.
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Extras From Geometry: Lychagin—Rubtsov Metric

» There is a Lychagin—Rubtsov metric on T*R? given by

A
oo (310
0 I

» When pulling back to a classical solution L, we find

o =< (7 0)

where ( = A is the vorticity.
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Summary of Relationship Prevniaion

Lewis Napper

Preamble

Ap >0 <0 =0 L Monge Ampas
Dominance | Vorticity Strain None 2 Geometry of 2D
alp, =0 | Elliptic Hyperbolic Parabolic Flower e Fluid
fa >0 <0 =0
J? —1I I, Singular Fauations

g Riemannian (4,0) Kleinian (2,2) Degenerate* ot
dlr, Riemannian (2,0) Kleinian (1,1)** Degenerate*

*These degeneracies are curvature singularities.

**The ¢ = 0 degeneracy may occur here and be removable.




2D ABC Flow: #(z,y) =

3

2

cos(y) + sin(x)
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Extension to Riemannian Manifolds Presentaton
Lewis Napper

Preamble

1. Monge—Ampeére

» On a Riemannian manifold (M, g), the approach is similar: Geomatey

2. Geometry of 2D
Incompressible Fluid

Ap + §R’U|2 (+Vic') = ¢;¢Y — 8487 . Flows

3. Towards Higher

Monge-Ampere
Equations

» Schematically take
dg; — V¢, =dq; — da:jFijqu.

Conclusions

I —g.
fo=30p = fo=3Ap+ 1R|v|%.

» Vorticity/strain dominance < sign(f,) < type(a|r = 0)
Pfaffian justifies Q-criterion hold on manifolds (e.g. S?, basin). EE




3. Towards Higher Monge—Ampere Equations
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An Alternative Approach in 2D Presentaon
Lewis Napper

Preamble

» Rather than stream function 1, work with velocity directly and s
consider solutions L, = {(x,y,v1(z,y), v2(z,9))}. 2. Geometry of 2D

Incompressible Fluid
Flows

» «a|p, = 0 gives Poission equation for pressure in terms of vorticity and [ ESunrm.
Monge-Ampere

strain, but now w|z, = 0 requires vanishing vorticity (bad!). Swedes
Conclusions

» Use a different symplectic form:

w = Vg A x,dz’
= dg; A dz? — dgo A dz?

where @|;, = 0 gives Vv’ = 0.




Higher MA Structure For Fluids Presentaton
Lewis Napper

Preamble

. . . . . 1. Monge—Ampere
The 2-forms @, « generalise in m dimensions to (m — 1)-plectic m-forms [

2. Geometry of 2D
Incompressible Fluid

w = qu /\ *g dxl Flows

] j 3. Towards High
a = 3Vq A Vg Axg (dz* Adz?) — f, voly e

Equations

Conclusions

With L, = {(z%,v;(x))}, the equations @|;, = 0 and a|z, = 0 are

Vﬂ)i =0
Ap aF RijUi’Uj = Cijcij — SMS”

the divergence free equation and Poisson equation respectively.




Geometry of Higher Dimensional Fluids Presniaten
Lewis Napper

Preamble

1. Monge—Ampeére
Geometry

» (w,a) not an MAS for m > 2, but can define and study metrics on 2. Geometry of 2D
ncompressible ul
T*M and L, as before. Ftas
Signature and curvature are related to vorticity and strain. 3, Towards Higher
onge—Ampeére

Equations

» Can obtain topological information using GauB—Bonnet theorem (2D) Conclusions
and helicity (3D)

» (w,«) admits Hamiltonian reduction relating incompressible 3D flows
with symmetry to compressible 2D flows with MAS [Blacker 2023].




Some Questions... (Ongoing Work)

» If not an MAS, what is (w, ) for m > 2 and what types of equations
do these correspond to?

» Can we write a Lychagin—Rubtsov theorem to classify these
equations?

» LR theorem uses the structure @ = J — w but this isn’t defined for
our (w, a) for m > 2 — when is J defined and why?
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Partial Higher Lychagin—Rubtsov Theorem

» An m-form @ on T*M and endomorphism J on X(T*M) are
compatible if, for all k =1,---m,

w(JX1,Xa, X)) = w( Xy, - T Xpy - Xom)

» For (m — 1)-plectic form w and compatible almost (para-)complex
structure J, then J is integrable iff o :== J _ w is closed.

» In order to complete the theorem, we require the following:
— Effectiveness: when does (w, «v) define almost (para-)complex J?
— Pfaffian: what equations are we equivalent to and when?
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Steps Forward In Three Dimensions

» Let ¢f = ¢! A el A e*. Non-degenerate 3-forms in 6 dimensions (on
T*M) look like (1), (2), or (3) in some basis {€'}_; [Bryant. 2006]

(1) 6123 +€456
(2) 6136 +€426 +€235 + 6145
(3) 6135 +€416 +€326

» A pair of non-degenerate 3-forms (w, o) from different classes cannot
define almost (para-)complex J. What about in the same class?

» Our fluid dynamical forms were not from the same class — is there an
F such that (w,a + Fw) are in the same class in general?
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Conclusions
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Pre Viva
S u m m a ry Presentation
Lewis Napper

Preamble

1. Monge—Ampeére
Geometry

\/

Introduced Monge—Ampere geometry as a tool for studying PDEs.
2. Geometry of 2D
Incompressible Fluid

Discussed application of these techniques to two-dimensional Flows
incompressible fluids, replicating and extending the Q-criterion for R
dominance of vorticity and strain.

\/

Equations

Conclusions

» Showed how the MAS could be extended to higher dimensional flows
and hinted at application of reduction to better understand topology.

» Presented initial steps to classifying higher MAS such as the Poisson
and divergence-free equations in three dimensions.
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» Can we complete the higher Lychagin—Rubtsov theorem and what 1. Monge-Ampre

Geometry

equations are we (locally) equivalent to? e
H 1 1l - y - = - . Geometry of 2
What are ‘effectiveness’ and the ‘Pfaffian’ in this setting? Incompressible Fluid

Flows

. . . . . . 3. Towards Higher
» Is it possible to encode dynamics of fluids as well as kinematics? Monge-Ampére

. . 5 Equations
Could the vorticity equation ’

Conclusions
¢ + V(¢ -v) — vAC =0
be used as a flow equation over time ¢ for solutions L7

» Could we consider generalised solutions of the Poisson equation?
These represent weather fronts in [D'Onofrio et al. 2023].




Thank you!

Any questions?
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