Curvature Without Calculus A Comparison Geometry Primer

Lewis Napper (University of Surrey, UK)

28th January 2025

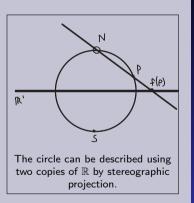
PGR Conference 2025

Lewis Napper

Manifolds and Curvature

Metric Spaces and Distance

- ➤ <u>Manifold</u> M looks like copies of ℝⁿ patched together (spheres, surfaces...)
- ➤ Equip with <u>Riemannian metric</u> g, to define inner product on each tangent space T_pM: Euclidean X · Y = X^TY In general X · Y = X^TgY
- ▶ View g as positive definite, symmetric matrix which varies (smoothly) with $p \in M$



PGR Conference 2025

Lewis Napper

Manifolds and Curvature

Metric Spaces and Distance

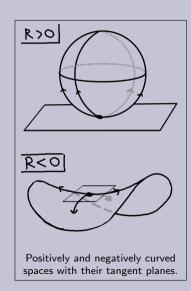
Intrinsic Curvature

 Represents deviation of manifold from tangent space at each point (local):
R > 0 - Looks like bowl.
R = 0 - Looks like plane.

- R < 0 Looks like saddle.
- Is given by component(s) of Riemann curvature tensor:

$$\tilde{R}(X,Y)Z = [\nabla_X, \nabla_Y]Z - \nabla_{[X,Y]}Z$$

so need C^2 metric etc (or weak derivatives).



PGR Conference 2025

Lewis Napper

Manifolds and Curvature

Metric Spaces and Distance

Distance Over Derivatives

▶ Metric space is a set M with <u>distance</u> $d: M \times M \rightarrow [0, \infty)$ satisfying

- Positive definite: d(x, y) = 0 iff x = y.
- Symmetry: d(x, y) = d(y, x)
- Triangle inequality: $d(x,z) \leq d(x,y) + d(y,z)$

 \blacktriangleright Every Riemannian manifold (M,g) can be given distance

$$d_g(x, y) = \inf \{ L_g(\gamma) \mid \mathcal{C}^1 \text{ curves } \gamma : [a, b] \to M \text{ from } x \text{ to } y \},\$$

where $L_g(\gamma) = \int_a^b \sqrt{g(\gamma'(t), \gamma'(t))} \, dt$ is the length of γ w.r.t. g.

PGR Conference 2025

Lewis Napper

Manifolds and Curvature

Metric Spaces and Distance

► Can measure length of curves $\gamma : [a, b] \to M$ in metric spaces using the distance d:

$$L_d(\gamma) \coloneqq \sup \left\{ \sum_{i=0}^{n-1} d(\gamma(t_i), \gamma(t_{i+1})) \middle| a = t_0 < \dots < t_n = b \right\}.$$

- ► Call curves from x to y <u>distance realisers</u> if $L_d(\gamma) = d(x, y)$.
- ► Applying triangle inequality to $L_d(\gamma)$, see $L_d(\gamma) \ge d(x, y)$ for all γ ; distance realisers are shortest curves.

PGR Conference 2025

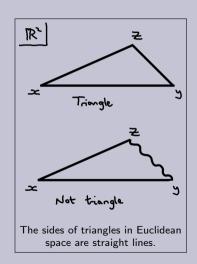
Lewis Napper

Manifolds and Curvature

Metric Spaces and Distance

Triangles in Metric Spaces

- Triangles $\Delta(x, y, z)$ are triples of points $\overline{x, y, z}$ pairwise joined by distance realisers.
- Restrict to distance realisers so side-lengths are unique for choice of vertices.
- Distance realisers (therefore triangles) between points may not exist or be unique.



PGR Conference 2025

Lewis Napper

Manifolds and Curvature

Metric Spaces and Distance

Model Spaces of Constant Curvature

Model spaces of constant curvature R:

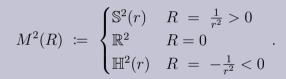
 \succ

PGR Conference 2025

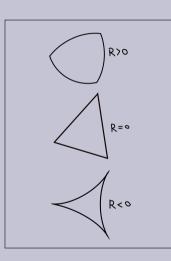
Lewis Napper

Manifolds and Curvature

Metric Spaces and Distance



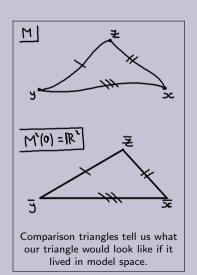
- Come equipped with natural distance (unique, complete, simply connected, 2d).
- Triangles in negatively curved spaces are "thinner" than in positively curved ones.



Comparison Triangles

- ▶ <u>*R*-Comparison triangle</u> for $\Delta(x, y, z) \in M$ is the unique triangle $\Delta(\bar{x}, \bar{y}, \bar{z}) \in M^2(R)$ with the same side-lengths.
- A triangle satisfies <u>size-bounds</u> for R if it has an R-comparison triangle. This requires:

$$d(x,y) + d(y,z) + d(x,z) < 2 \operatorname{diam}(M^2(R))$$
.



PGR Conference 2025

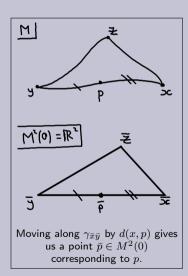
Lewis Napper

Manifolds and Curvature

Metric Spaces and Distance

- ► Let $p \in \gamma_{xy}$ be a point on a side of $\Delta(x, y, z)$.
- The unique <u>*R*-comparison point</u> $\bar{p} \in \gamma_{\bar{x}\bar{y}}$ on the corresponding side of $\Delta(\bar{x}, \bar{y}, \bar{z})$ satisfies

$$d(x,p) = d(\bar{x},\bar{p})$$
 and $d(p,y) = d(\bar{p},\bar{y})$.



PGR Conference 2025

Lewis Napper

Manifolds and Curvature

Metric Spaces and Distance

Curvature Bounds

► $(\geq R)$ -comparison nbhd is open $U \subseteq M$:

- all distance realisers exist in U.
- for all $\Delta(x, y, z) \subset U$ and $p, q \in \Delta(x, y, z)$, the comparison points satisfy $d(p, q) \ge d(\bar{p}, \bar{q})$.

➤ Metric spaces *M* have curvature:

- bounded below by R if c. nbhds cover M
- globally bounded below by R if U = M.

► Use ≤ for curvature *bounded above*



PGR Conference 2025

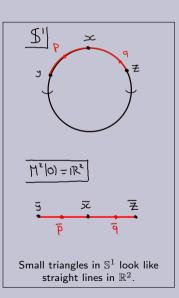
Lewis Napper

Manifolds and Curvature

Metric Spaces and Distance

Example: Circle (Part 1)

- ➤ Unit circle S ⊂ R² with d(x, y) = Euclidean length of shortest arc.
- Cover circle with open intervals of length $< \pi$ triangles look like image.
- ▶ 0-Comparison triangle degenerates to segment, so $d(p,q) = d(\bar{p},\bar{q})$.
- S has curvature bounded above and below by 0, so has curvature 0 locally.



PGR Conference 2025

Lewis Napper

Manifolds and Curvature

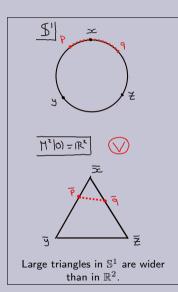
Metric Spaces and Distance

Example: Circle (Part 2)

- ➤ Globally, S only has curvature bounded below by 0 and not above.
- Consider a triangle which covers the circle as in image, then

$$\begin{split} d(p,q) &= d(p,x) + d(x,q) \quad \text{(distance realiser)} \\ &= d(\bar{p},\bar{x}) + d(\bar{x},\bar{q}) \quad \text{(comp. points)} \\ &> d(\bar{p},\bar{q}) \quad \text{(strict triangle inequality)} \end{split}$$

➤ Has curvature 1 (check by comparing triangles to S²).

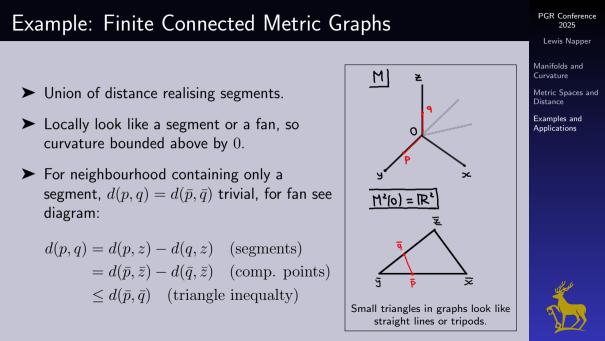


PGR Conference 2025

Lewis Napper

Manifolds and Curvature

Metric Spaces and Distance



Some Fun Results From Literature

- Complete, "intrinsic" metric spaces have global curvature bounded below by R iff they have curvature bounded below by R [Perelman–Burago–Gromov].
- ► Complete, intrinsic metric spaces with curvature bounded below by R > 0 have diameter $\leq \frac{\pi}{\sqrt{R}}$ [Bonnet–Myers].
- ➤ Limit of metric spaces with curvature bounded below by *R* is a metric space with curvature bounded below by *R* [Gromov-Hausdorff].
- Every compact, intrinsic metric space is the limit of finite, connected graphs [Gromov–Hausdorff].

PGR Conference 2025

Lewis Napper

Manifolds and Curvature

Metric Spaces and Distance

- This talk addressed the low regularity (no calculus) version of Riemannian manifolds – what about Lorentzian?
- Einstein equations admit low regularity Lorentzian metrics as solutions

$$R_{\mu\nu} + (\Lambda - \frac{1}{2}Rg_{\mu\nu}) = CT_{\mu\nu}$$

Occur in models of grav. waves, cosmic strings, certain singularities.

Lorentzian pre-length spaces are analogues of metric spaces in this setting (work similarly, but only measure time separation...)

PGR Conference 2025

Lewis Napper

Manifolds and Curvature

Metric Spaces and Distance

Thank you! Any questions?

PGR Conference 2025

Lewis Napper

Manifolds and Curvature

Metric Spaces and Distance

