
Semester 2, 2020/21
University of Surrey

Lewis Napper
Stefan Klus

Numerical and Computational Methods

Exercise Solutions

Contents

Exercise Sheet 1 2

Exercise Sheet 2 3

Exercise Sheet 3 5

Exercise Sheet 4 7

Exercise Sheet 5 9

This file contains the solutions to the mathematical problems from ex-
ercise sheets 1− 5. The MATLAB scripts for exercise sheet n can be found
in “Exercises n Solutions Script.m”. The code block “Class n Exercise m
Script” can be executed to view the output of the functions for a given ex-
ercise m on sheet n. The functions themselves can be found in the block
“Class n Exercise m Function(s)”.

1

Exercise Sheet 1

Exercise 1.1.

For the numbers a given in the question, computing the cube root of a to
an accuracy of 10−6 takes the following amount of iterations:

(i) For a = 3.375, we need 6 iterations.

(ii) For a = −8, we need 7 iterations.

(iii) For a = 1331, we need 16 iterations.

Exercise 1.2.

This exercise is purely numerical.
See “Exercises 1 Solutions Script.m” for the corresponding code.

Exercise 1.3.

The algorithm approximates the largest eigenvalue of the matrix A.

Exercise 1.4.

When timing the Laplace expansion against Matlab’s inbuilt functions, the
key points are

• The Laplace expansion takes a lot longer to compute for large matrix
sizes. Recall the algorithm has time complexity O(n!).

• The inbuilt function is consistently faster than the Laplace expansion.
The inbuilt function uses LU decomposition which has time complexity
O(n3)).

2

Exercise Sheet 2

Exercise 2.1.

This exercise is purely numerical.
See “Exercises 2 Solutions Script.m” for the corresponding code (including
functions for LU decomposition, forward substitution, and backward substi-
tution).

Exercise 2.2.

This exercise is predominantly numerical, however we make a few key ob-
servations:

• By construction, b = H ∗ (1, 1, 1, 1, 1)T , so x = (1, 1, 1, 1, 1)T is the
solution for the Hilbert problem.

• Perturbing the vector b by some small vector, e.g. (10−3)e1, results in
a wildly different answer. In this case we find

x =


1.0250
0.7000
2.0500
−0.4000
1.6300

 . (2.1)

• For our choice of perturbation, we find that the condition number
is c ≈ 4.8 ∗ 105. Since the condition number is large, we can see
that Hilbert matrices are ill-conditioned, which explains the behaviour
above.

• The runtimes of the LU Solver algorithm applied to the Hilbert prob-
lem and its perturbation are roughly the same, with spikes being am-
plified slightly by the perturbation.

Exercise 2.3.

Let A be a symmetric, positive definite, n × n matrix. This means that
xTAx > 0 for all x ∈ Rn \ {0}.

(i) First note that a symmetric matrix has only real eigenvalues. Let v be
an arbitrary eigenvector of A. If all eigenvalues of A are positive, then

3

Av = λv for some eigenvalue λ > 0. As A is symmetric and positive
definite, we have

0 < vTAv = λvT v = λ||v||2 . (2.2)

Since ||v||2 > 0, we find λ > 0, as required.

(ii) Recall that symmetric, positive definite matrices admit the following
diagonalisation/eigendecomposition:

A = V DV T with D = diag(λ1, · · ·λn) (2.3)

the diagonal matrix whose entries are the eigenvalues of A. Here V
is the matrix formed by taking the eigenvectors of A as columns. A
V T = V −1 by the real spectral theorem (the eigenvector matrix is
orthogonal), we can apply Binet’s theorem to find

det(A) = det(D) =
n∏

i=1

λi > 0 . (2.4)

(iii) As det(A) ̸= 0, the matrix A must be invertible.

(iv) Again using the eigendecomposition, we find

A−1 = (V DV T)−1 = V D−1V T . (2.5)

Evidently then, A−1 is symmetric. Furthermore, given any vector
x ∈ R \ {0}, we have

xTA−1x = xTV D−1V Tx (2.6)

= xTV D− 1
2D− 1

2V Tx (2.7)

= ||D− 1
2V Tx||2 > 0 , (2.8)

so A−1 is positive definite, as required.

4

Exercise Sheet 3

Exercise 3.1. (i) Recall that a function F : R → R is called a contrac-
tion if there exists a Lipschitz constant K < 1 such that

|F (x)− F (y)| ≤ K|x− y| , (3.1)

for all x, y ∈ R. By the process described in the hint, if the derivative
of F is bounded by some M < 1, i.e. |F ′(x)| < M < 1, then K = M is
an appropriate choice of Lipschitz constant. It remains to check that
|F ′(x)| is bounded above by such an M in our case, as shown by the
plot of the function dF .

(ii) Using the plot of the error against the number of iterations, we see
exponential decay in the error as the number of iterations is increased.
This is mirrored by the ratio of successive errors, which converges to
a fixed value, suggesting the scheme itself converges.

(iii) We find the polynomial by setting F (x) = x (as we consider fixed
point iteration) and multiplying out the denominators to obtain:

x3 − x2 − x− 1 = 0 . (3.2)

Exercise 3.2.

This is a predominantly numerical exercise.
See “Exercises 3 Solutions Script.m” for the corresponding code. The root
of f(x) = x− 1− 1

x − 1
x2 is in the interval [1.8391, 1.8394] according to the

bisection method.

Exercise 3.3.

We are given three points (x0, y0) = (−2, 5), (x1, y1) = (0,−1), and (x2, y2) =
(3, 8). Recall that the Lagrange polynomials are given by

Li(x) =

n∏
j=0
j ̸=i

x− xj
xi − xj

, (3.3)

for i = 0, · · · , n (here n = 2), from which we find

L0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

1

10
x2 − 3

10
x , (3.4)

5

L1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
= −1

6
x2 +

1

6
x+ 1 , (3.5)

L2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
=

1

15
x2 +

2

15
x , (3.6)

and the interpolating polynomial through the points (x0, y0), (x1, y1), and
(x2, y2) is given by

p(x) =
2∑

i=0

yiLi(x) =
6

5
x2 − 3

5
x− 1 . (3.7)

It is straightforward to verify that p(−2) = 5, p(0) = −1, and p(3) = 8, so
the polynomial passes through the given points, as required. We also com-
pute the Lagrange polynomials and interpolating polynomial in MATLAB
and obtain the same result numerically.

Exercise 3.4.

Given three points (x0, y0) = (−2, 5), (x1, y1) = (0,−1), and (x2, y2) =
(3, 8), the Newton interpolation formula for the interpolating polynomial of
order two is

p(x) = p(x0) + p[x0, x1](x− x0) + p[x0, x1, x2](x− x0)(x− x1) , (3.8)

where p(x0) = y0 and the divided differences are given by

p[xi, xj , xk] =
p[xk, xj]− p[xj , xi]

xk − xi
for i ̸= k , (3.9)

p[xi, xj] =
yj − yi
xj − xi

for i ̸= j . (3.10)

Computing these differences for our points, we find

p[x0, x1] = −3 , p[x1, x2] = 3 , and p[x1, x2, x3] =
6

5
(3.11)

so the interpolating polynomial is

p(x) = 5− 3(x+ 2) +
6

5
(x+ 2)x =

6

5
x2 − 3

5
x− 1 (3.12)

as obtained in the previous part.

6

Exercise Sheet 4

Exercise 4.1.

We are given the following information

x0 = 1, x1 = 2 (4.1)

y0 = p(1) = 10, y1 = p(2) = 26 (4.2)

p′(2) = 23 (4.3)

p′′(2) = 16 . (4.4)

Using Newton interpolation, the first two pieces of information would yield
a linear interpolation p. However, as we are given derivative information,
we can use Hermite interpolation. The Hermite interpolation formula for a
third order interpolating polynomial given two points is

p(x) = p(x0) + p[x0, x1](x− x0) + p[x0, x1, x1](x− x0)(x− x1)

+ p[x0, x1, x1, x1](x− x0)(x− x1)
2
, (4.5)

where, as in exercise 3.4, we have the divided differences

p[xi, xj , xk, xℓ] =
p[xj , xk, xℓ]− p[xi, xj , xk]

xℓ − xi
for i ̸= ℓ , (4.6)

p[xi, xj , xk] =
p[xk, xj]− p[xj , xi]

xk − xi
for i ̸= k , (4.7)

p[xi, xj] =
yj − yi
xj − xi

for i ̸= j . (4.8)

When all n indices in a divided difference coincide, we also have the following
formula

p[xi, · · ·xi] :=
1

n!
p(n)(xi) . (4.9)

Computing these differences for our points, we have

p[x0, x1] = 16 , (4.10)

p[x1, x1] = p′(2) = 23 , (4.11)

p[x0, x1, x1] =
p[x0, x1]− p[x1, x1]

x0 − x1
= 7 , (4.12)

p[x1, x1, x1] =
1

2
p′′(2) = 8 , (4.13)

p[x0, x1, x1, x1] = 1 . (4.14)

Putting this all together, we find

p(x) = x3 + 2x2 + 3x+ 4 . (4.15)

7

Upon computing the derivatives

p′(x) = 3x2 + 4x+ 3, and p′′(x) = 6x+ 4 , (4.16)

it is straightforward to verify that p(1) = 10, p(2) = 26, p′(2) = 23, and
p′′(2) = 16, so our polynomial passes through the given points, as required.

Exercise 4.2.

This exercise is predominantly numerical, however we make one comment
on why solving Cα = r gives us an approximation of f . First recall that

Cij = ⟨ϕi, ϕj⟩ and ri = ⟨ϕi, f⟩ , (4.17)

where ϕi(x) for i = 0, · · ·n is the basis against which we expand. Assume
our function can be expanded with respect to this basis (this is true for the
Taylor and Fourier bases), such that

f(x) =

n∑
i=0

= αiϕi(x) . (4.18)

Therefore,

ri = ⟨ϕi,
n∑

j=0

αjϕj⟩ =
n∑

j=0

αj⟨ϕi, ϕj⟩ =
n∑

j=0

αjCij = (Cα)i . (4.19)

That is, α in the equation Cα = r is the vector of coefficients in the expan-
sion of f against the basis ϕi(x).

Exercise 4.3.

This is a predominantly numerical exercise.
See “Exercises 4 Solutions Script.m” for the corresponding code. Note that
Simpson’s rule converges as we increase the step size, with large gains ini-
tially but diminishing returns. The error of the method decreases with the
step size.

8

Exercise Sheet 5

Exercise 5.1.

This question is predominantly numerical, however we show here how to
obtain the analytical solutions to the given initial value problems.

(i) We are given the ODE dx
dt = −2tx2 with initial condition x(0) = 1.

Using separation of variables, we find

1

x2
dx = −2t dt . (5.1)

Integrating both sides, we obtain

1

x
= t2 + C , (5.2)

for some real constant C. Using our initial condition, we obtain C = 1,
so

x =
1

t2 + 1
. (5.3)

A plot of this analytical solution against the approximation obtained
via the standard Runge–Kutta method can be found in
“Exercises 5 Solutions Script.m” and this shows that the approxima-
tion is visually indistinguishable from the analytical solution.

(ii) The second ODE we consider is a system(
x′

y′

)
=

(
0 1
−1 0

)(
x
y

)
with

(
x(0)
y(0)

)
=

(
1
0

)
. (5.4)

We solve this system by first finding the eigenvalues and eigenvectors
of the matrix

M =

(
0 1
−1 0

)
. (5.5)

The characteristic equation is λ1 + 1 = 0, so the eigenvalues are ±i
and the eigenvectors satisfy(

−λ 1
−1 −λ

)(
v1
v2

)
=

(
∓i 1
−1 ∓i

)(
v1
v2

)
=

(
0
0

)
(5.6)

so we can take

v± =

(
∓i
1

)
. (5.7)

Consequently, (
x
y

)
= Aeit

(
−i
1

)
+Be−it

(
i
1

)
. (5.8)

9

Solving for A and B using our initial conditions, we find A = −B = i
2 ,

so (
x
y

)
=

1

2

(
eit + e−it

i(eit − e−it)

)
=

(
cos(t)
sin(t)

)
. (5.9)

Therefore, x2 + y2 = cos2(t) + sin2(t) = 1 and the analytic solution
forms a circle in the (x, y)-plane, which is precisely what we see when
performing the Runge–Kutta method.

Exercise 5.2.

The Butcher tableau for the four stage Runge–Kutta method in question is
given by

0
1
2

1
2

1
2

1
2

1 1
1
6

1
3

1
3

1
6

From this we find

a =


0 0 0 0
1
2 0 0 0
0 1

2 0 0
0 0 1 0

 , b =


1
6
1
3
1
3
1
6

 , and c =


0
1
2
1
2
1

 (5.10)

where

ki = f(t0 + cih, x0 + h
4∑

j=1

kj) , (5.11)

x1 = x0 + h
4∑

i=1

biki . (5.12)

and f(t, x) = Ax as per our ODE x′ = Ax. Computing the ki, we find

k1 = f(t0, x0) = Ax0 (5.13)

k2 = f(t0 +
1

2
h, x0 +

1

2
hk1) = (1 +

1

2
hA)Ax0 (5.14)

k3 = f(t0 +
1

2
h, x0 +

1

2
hk2) = (1 +

1

2
hA+

1

4
h2A2)Ax0 (5.15)

k4 = f(t0 + h, x0 + hk3) = (1 + hA+
1

2
h2A2 +

1

4
h3A3)Ax0 (5.16)

10

hence

x1 = x0 +
1

6
h(k1 + 2k2 + 2k3 + k4) (5.17)

= (I + hA+
1

2
h2A2 +

1

6
h3A3 +

1

12
h4A4)x0 . (5.18)

Consequently, our method is of the form x1 = Bx0 with

B = (I + hA+
1

2
h2A2 +

1

6
h3A3 +

1

12
h4A4) . (5.19)

Note that the exact solution of the ODE x′ = Ax is

x(t) = eAtx0 = (I + tA+
1

2
t2A2 +

1

6
t3A3 +

1

12
t4A4 + · · ·)x0 , (5.20)

so our method produces a fourth order approximation to the exact solution
at time t = h (given initial condition x(t = 0) = x0).

Exercise 5.3.

This question is predominantly numerical, once we make the observation
that, for |hλ| < 1, the higher order terms in the exact solution become
negligible and the solution is well approximated by B. The region of stability
is plotted in “Exercises 5 Solutions Script.m”.

11

	Exercise Sheet 1
	Exercise Sheet 2
	Exercise Sheet 3
	Exercise Sheet 4
	Exercise Sheet 5

