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Abstract

In the synthetic geometric setting introduced by Kunzinger and
Samann, we present an analogue of Toponogov’s Globalisation Theo-
rem which applies to Lorentzian length spaces with lower (timelike)
curvature bounds. Our approach utilises a “cat’s cradle” construction
akin to that which appears in several proofs in the metric setting. On
the road to our main result, we also provide a lemma regarding the
subdivision of triangles in spaces with a local lower curvature bound
and a synthetic Lorentzian version of the Lebesgue Number Lemma.
Several properties of time functions and the null distance on globally
hyperbolic Lorentzian length spaces are also highlighted. We conclude
by presenting several applications of our results, including versions
of the Bonnet—Myers Theorem and Splitting Theorem for Lorentzian
length spaces with local lower curvature bounds, as well as discussion
of stability of curvature bounds under Gromov-Hausdorff convergence.
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1 Introduction

Recall that a metric space (X,d) is called a length (or intrinsic) space if
its distance function d(p,q) can be recovered as the infimum of the length
of curves joining p to ¢. This is the realm of so-called synthetic geometry,
which can be seen as a generalisation of Riemannian geometry to spaces
of lower regularity. Such spaces have proven an essential tool in the study
of geometric flows [7,23], optimal transport [55,61], and bounds on the
number of finite subgroups of fundamental and crystallographic groups, see
[17, Corollary 9.3.2] and [38] respectively. One notion that frequently arises
in this setting is the concept of curvature bounds; a metric length space
is said to have a lower (or upper) curvature bound if a given comparison
conditionE] holds on a neighbourhood of each point x € X, [3,[17]. These
conditions are used to tame some of the more erratic behaviours of metric
length spaces, so that they act more like their Riemannian counterparts,
while not requiring smoothness.

A vast amount of theory has been developed concerning spaces which
exhibit global curvature bounds (where the comparison condition holds on
the whole space) and their properties [26}27]. The preservation of curvature
bounds along sequences of spaces which converge in the Gromov-Hausdorff
topology is a prime example [18[34]. As such, it is pertinent to ask when a
space with a known local curvature bound also possesses a global one, that
is, when does a curvature bound globalise?

In the case of lower curvature bounds, this was first proven in two di-
mensions by Pizzetti [50] (see the history [46] for more details) and later
independently re-proven by Alexandrov [5,6]. These “Toponogov Globali-
sation Theorems” were popularised by Toponogov’s proof for Riemannian
manifolds in the late 1950s [56}[57,58]. Since then, Burago, Gromov and
Perelman [18] and Plaut [51,52] have extended the result to arbitrary com-
plete metric length spaces, with refinements to their proofs being made by
Alexander, Kapovitch, and Petrunin [3], as well as Lang and Schroeder [37].
A further generalisation regarding (not necessarily complete) geodesic spaces
was also provided by Petrunin in [49].

Analogously to metric length spaces, in [35], Kunzinger and S&dmann
introduced the notion of a Lorentzian (pre-)length space, which facilitates
the study of non-smooth Lorentzian geometry, with key applications in the
investigation of spacetimes with low regularity metrics [22,24,25], cones [2],
and robust concepts of Gromov-Hausdorff convergence in the Lorentzian
setting [36,41,/42]. This synthetic Lorentzian picture also admits bounds
on the so-called timelike curvature of a Lorentzian length space, via com-
parison conditions [8}|16,35]. These timelike curvature bounds have been

!Several of these comparison conditions are on display in [3, Theorem 8.30] and are
shown to be equivalent for complete metric length spaces.



shown to behave like their metric counterparts in many circumstances and
have hence been crucial for deriving Lorentzian equivalents to many metric
results, including the Reshetnyak Gluing Theorem [15,53], Splitting The-
orem [14], and a Bonnet—Myers style theorem for spaces with global lower
timelike curvature bounds [13].

As for metric spaces, it is again pertinent to ask when a Lorentzian
space with a local timelike curvature bound has a global one. In the smooth
Lorentzian setting, the first result in this direction was achieved by Harris
in [32], where a global comparison condition was inferred from lower timelike
(sectional) curvature bounds. An Alexandrov’s Patchwork approach was
used by three of the present authors to answer this question for Lorentzian
length spaces in the case of upper timelike curvature bounds in [13], where
globalisation results in the metric and Lorentzian settings were compared in
detail. This paper is a continuation of that work and presents a solution for
spaces with lower timelike curvature bounds, as well as several consequences
of interest.

The paper is organised as follows. We begin in Section [2| with a brief
review of some basic yet crucial properties of Lorentzian (pre-)length spaces.
We provide an overview of hyperbolic angles and how they may be used to
describe curvature bounds, before discussing existence conditions for time
functions and null distances with advantageous properties. The principal
part of this paper is contained in Section 3| which begins with a series of sup-
plementary results, including a Lorentzian analogue of the Lebesgue Number
Lemma and a result concerning the splitting of triangles in Lorentzian length
spaces with lower curvature bounds, in the spirit of the Gluing Lemma [15].
We then proceed with a construction derived from the “cat’s cradle” of Lang
and Schroeder [37] in the metric setting, with our main result being stated
as follows:

Theorem 3.6} Let X be a connected, globally hyperbolic, regular Lorentzian
length space with a time function 7" and curvature bounded below by K € R
in the sense of angle comparison. Then each of the properties in Definition
hold globally; in particular, the entire space X is a (> K)-comparison
neighbourhood and hence has curvature globally bounded below by K.

This result globalises the notion of lower curvature bounds defined via
“angle comparison,” as in Definition [2.6] Analogously to the metric setting,
curvature bounds may also be characterised with respect to other compari-
son conditions, which can be shown to be equivalent (see |12, Theorem 5.1]
for a complete list of equivalent characterisations). Therefore, these con-
ditions also exhibit the globalisation property, sometimes under additional
assumptions which shall be discussed in Section [3| Note that the existence
of a time function in this setting is guaranteed if X is second countable.



We close this paper in Section [d] with an overview of some applications of
our results. In particular, we show that lower curvature bounds are preserved
under appropriate Lorentzian versions of Gromov-Hausdorff convergence,
we extend the Lorentzian Bonnet—Myers Theorem [13] and Splitting Theo-
rem [14] to Lorentzian length spaces with (local) lower curvature bounds and
discuss the stability of curvature bounds under Gromov—Hausdorff type con-
vergences (for example Minguzzi-Suhr convergence |41]). Potential future
results are also discussed.

2 Preliminaries

Over the course of the last half-decade, the theory of Lorentzian length
spaces has gained immense traction, so much so that it is now a rather
standard tool in the study of Lorentzian geometry. Consequently, in this
section we only present material which is both critical for deriving our re-
sults and which also appears infrequently or disparately in the literature.
In particular, we focus on the properties of hyperbolic angles [8,/16], time
functions [36], and null distances [54]. For more fundamental definitions, we
refer the reader to [13,35].

2.1 Notation and conventions

Let us begin by reintroducing our main characters and fixing our conven-
tions. Recall that a Lorentzian pre-length space (X, d,<,<,T) consists of
a metric space (X,d) equipped with a causal relation <, timelike relation
<, and time separation function 7, cf. [35, Definition 2.8|. For brevity, we
shall simply denote such spaces by their associated set X, where the addi-
tional structures can be identified from the context. A Lorentzian pre-length
space which is additionally locally causally closed, causally path-connected,
localisable, and whose time separation function takes the form

7(x,y) = sup{L-(7y) | v future-directed, causal curve from x to y},

for z,y € X with a future-directed causal curve between them and 7(z,y) =
0 otherwise, is called a Lorentzian length space, cf. |35 Definition 3.22].

Unless explicitly stated otherwise, causal curves are assumed to be future-
directed. Furthermore, we use the term distance realiser to refer to any
causal curve in a Lorentzian pre-length space, cf. [35, Definition 2.24], whose
T-length , attains the 7-distance between its endpoints, i.e. a causal curve
v from z to y, such that L (y) = 7(x,y).

We inherit from earlier works the notion of the causal past/future of a
point 2 € X, which we denote by J*(z). The analogous timelike past /future
is denoted I*(x). Causal and timelike diamonds with governing points



z,y € X are respectively denoted by J(z,y) := J*(z)NJ~(y) and I(z,y) :=
It (x) NI~ (y). Recall that a Lorentzian pre-length space is globally hyper-
bolic if all causal diamonds J(z,y) C X are compact and X is non-totally
imprisoning, cf [35, Definition 2.35 (iii)].

We now wish to address the concept of regularity, one of the defining
properties of a regularly localisable Lorentzian pre-length space, cf. [35, Def-
inition 3.16] and a natural condition to impose on a Lorentzian pre-length
space in its own right. This property is also crucial for defining timelike
curvature bounds via angle comparison.

Definition 2.1 (Regularity). Let X be a Lorentzian (pre-)length space. X
is called regular if any distance realiser between timelike related points is
timelike, i.e. it cannot contain a null piece.

It is worth observing that under strong causality, the notion of being
regularly localisable is equivalent to being regular (in the sense of Definition
and localisable, see [12, Lemma 3.6].

2.2 Hyperbolic angles and curvature bounds

Hyperbolic angles in Lorentzian pre-length spaces were introduced in [16]
and [8], where the latter puts a greater focus on comparison results. Through-
out this section, we follow the conventions of the former reference.

First recall that the finite diameter of a Lorentzian pre-length space is
given by the supremum of (finite) 7-values on the space. Denote by L?(K)
the Lorentzian model space of constant curvature K and its finite diameter
by Dk, cf. [16, Definition 1.11]. Similarly to the metric case, we have

' , 0o, K >0,
Dk = diamg, (L*(K)) = - £ K <0
S K <O0.

(2.1)

Furthermore, in a Lorentzian pre-length space, triples of points (p, ¢, r) with
T(p,r) < o0, either p < ¢ < r or p < ¢ < r, and (non-trivial) time-
separations realised by distance realisers, will be called admissible causal
triangles. They shall be denoted by A(p, g, ), where the points are written
according to their causal order unless otherwise stated, with each side being
labelled either by the name of an associated distance realiser or, if the specific
choice of distance realiser or parametrisation thereof is unimportant, by the
closed interval between the endpoints, i.e. [p,q| is a distance realiser from
p to q. If we additionally have p < ¢ < r, the triple is called a timelike
triangle, cf. |35, Lemma 4.4]. Throughout the remainder of this paper,
we tacitly assume that any such triangles satisfy appropriate size bounds,
cf. [35, Lemma 4.6], that is, 7(p,r) < Dk.



Definition 2.2 (Comparison angles). Let K € R and let X be a Lorentzian
pre-length space. Let 21 < xo < x3 be a triple of causally related points in
X, satisfying size bounds for K, cf. |35, Lemma 4.6] and let A(Z1,Z2,Z3)
be a comparison triangleﬂ in L2(K) for (z1,72,23). Fix distinct indices
i,7,k € {1,2,3} and assume that z; is timelike related to both z; and zj, in
some way. We define the comparison angle at x; by

2

Here A{HJ—;?(K) (Zj,Zk) is the hyperbolic angle at z; in A(Z1,Z2, 73) C L*(K),
which can be calculated via the law of cosines, cf. [16, Lemma 2.3|, by setting
o=11if i =2 (x; is not a time endpoint), 0 = —1 if i = 1 or 3 (z; is a time
endpoint).

To reduce the quantity of case distinctions, we also define the signed
comparison angle ZE;K(QZ]',CCk) = UZ£($]-,3:;€)7 where o is called the sign
and Zg(:nj,xk) > 0. In this way, ZE;K(xj,xk) is positive at ¢ = 2 and
negative at 1 = 1 or 3.

Another important consequence of the law of cosines is the following
property, which will be used extensively throughout this work.

Corollary 2.3 (Law of cosine monotonicity). Let K € R and consider any
timelike triangle in the Lorentzian model space L2(K). Then fixing the
two short side lengths and varying the longest, any angle is monotonically
increasing. Fixing one short side and the longest side length and varying
the other short side, any angle is monotonically decreasing.

Both upper angles and angles between timelike curves in a Lorentzian
pre-length space may now be defined via the comparison angle introduced
above.

Definition 2.4 (Angles). Let X be a Lorentzian pre-length space and «, 3 :
[0,€) — X be two timelike curves (where we permit one or both of the curves
to be past-directed) with x := «(0) = 3(0). Then we define the upper angle

£(a, B) = limsup £5 (a(s), B(t)) ,
(s,t)eD
s,t—0

where

D = {(s,t)|s,t >0, a(s), B(t) timelike related}
N{(s,t) | a(s), B(t), z satisfies size bounds for K} .

2Recall that a triple of causally related points has a comparison triangle in the model
space L?(K) if the side-lengths satisfy size bounds with respect to K, cf. [35, Definition
4.14]. This does not require the points to be timelike related, nor that curves between the
points exist.



If the limit superior is in fact a limit and is finite, we say the angle exists
and call £, (a, B) an angle.

Observe that the sign o of the comparison angle is independent of (s, t) €
D. Therefore, the sign of the (upper) angle is also defined to be precisely
o. The signed (upper) angle is then defined as £5(a, 8) = 04, (a, B).

The following proposition provides sufficient conditions for adjacent an-
gles taken at a point along a distance realiser to be equal. This property
is similar to the metric notion of a segment being balanced, cf. [37, Lemma
1.3], and, as such, it will be crucial in constructing a proof of our main
result.

Proposition 2.5 (Balanced segments in Lorentzian pre-length space). Let
X be a strongly causal and locally causally closed Lorentzian pre-length
space with timelike curvature bounded below by K € R, and let a: [0,1] —
X be a timelike distance realiser. Let z = a(t) for t € (0,1) and consider the
restrictions a_ = a|[07t] and oy = oz|[t71} as past-directed and future-directed
distance realisers emanating from x, respectively. Let 5 be a timelike dis-
tance realiser emanating from z. Then £, (a_, ) = L, (a4, 5).

Proof. See [16], Corollary 4.6] (and [16, Lemma 4.10] for the existence of the
angle). O

Throughout this paper, we make use of several different formulations
of curvature bounds via comparison methods. Each of these has, at least
partly, been introduced in the context of Lorentzian length spaces in ear-
lier works, with full details on all current formulations being found in [12],
which also provides conditions under which they are equivalent. Since we
predominantly use the formulation of curvature bounds in terms of angle
comparison, we now provide this explicitly. This angle comparison condi-
tion is analogous to the one globalised by [32] in the smooth Lorentzian
setting and is the definition to which our globalisation result will directly
apply.

Definition 2.6 (Curvature bounds by angle comparison). An open subset
U in a regular Lorentzian pre-length space X is called a (> K)-comparison
neighbourhood if it satisfies the following:

(i) 7 is continuous on (U x U) N 771([0, D)) and this set is open.

(ii) For all z,y € U with x < y and 7(x,y) < Dk there exists a distance
realiser contained entirely in U connecting « and y.

(iii) Let « : [0,a] — U,B : [0,b] — U be timelike distance realisers
with arbitrary time-orientation and such that z := «(0) = £(0) and
A(z,a(a),5(b)), with some permutation of vertices, is an admissible
causal triangle satisfying size bounds. Then

£3(a, B) < 435 (ala), B(D)) -



(iv) Additionally, the following property must hold. If a, 8,7 : [0,e) = U
are three timelike curves with z := «(0) = 8(0) = 7(0), «,~ pointing
in the same time direction, and § in the other, then we have the
following special case of the triangle inequality of angles:

Lo(a,y) < La(a, B) + £a(8,7) - (2.2)

We say that X has curvature bounded below by K in the sense of angle
comparison if every point in X has a (> K )-comparison neighbourhood.

If X itself is a (> K)-comparison neighbourhood, then we say that X has
curvature globally bounded below by K, and similarly for curvature bounds
above.

Observe that, in point (iv) of the above definition, we can also take the
curves to be maps into X, as the angles only depend on the initial segments
of the curves. Furthermore, when considering curvature bounds from above,
the inequality in (iii) is reversed and (iv) is dropped, though this notion will
not be used in the remainder of the paper.

For completeness sake, below we state the equivalence result for the
characterisations we use. Note that the assumptions in |12, Theorem 5.1]
are much weaker than ours; our presentation, however, is entirely sufficient
for our purpose. The a priori assumption of in the following proposition
is a consequence of a cumbersome technicality when trying to obtain angle
comparison from other formulations. This is another reason why we prefer
to work with angle comparison directly: this triangle inequality of angles is
already assumed in the definition.

Proposition 2.7 (Equivalence of curvature bounds). Let X be a globally
hyperbolic and regular Lorentzian length space which satisfies (2.2]). Then
the following are equivalent for an open subset U C X:

(i) U is a (> K)-comparison neighbourhood in the sense of timelike tri-
angle comparison.

(ii) U is a (> K)-comparison neighbourhood in the sense of monotonicity
comparison.

(iii) U is a (> K)-comparison neighbourhood in the sense of angle com-
parison.

(iv) U is a (> K)-comparison neighbourhood in the sense of hinge com-
parison.

Our eventual proof of the globalisation of timelike curvature bounds will
consider admissible causal triangles which are not contained in comparison
neighbourhoods and for which Definition [2.6(iii)| fails to hold at some vertex
and show that, under certain assumptions, these cannot exist. We formulate
the aforementioned failure characteristic more precisely as follows.



Definition 2.8 (Angle condition holds/ fails). Let X be a regular Lorentzian
pre-length space with timelike curvature bounded below by K € R in the
sense of angle comparison and let « : [0,a] — X, 8 : [0,0] — X be time-
like distance realisers of arbitrary time-orientation (not necessarily con-
tained in a comparison neighbourhood), with L(«), L(B), T(a(a),B(D)),
T7(B(b),a(a)) < Dg, and such that = := «(0) = §(0) and «(a),(b) are
causally related. We say that the angle condition holds at x if Definition
2.0((ii1)| is satisfied at x, with respect to the curvature bound K on X. Sim-
ilarly, we say that the angle condition fails to hold at x if Definition [2.6{iii)}
is not satisfied at z, i.e. if the inequality

Lo, B) > £55(a(a), B(D))

holds, with respect to the curvature bound K on X. In particular, the angle
condition may be said to hold/fail at vertices between timelike sides of an
admissible causal triangle.

Moreover, note that by |12, Remark 3.12], it is sufficient to only consider
timelike triangles when dealing with curvature bounds in the sense of angle
comparison.

In order to verify whether or not triangles may have a failing angle, we
need to be able to divide timelike triangles into smaller timelike triangles
for which the answer to this question is known. To do so, we will utilise the
twin Lorentzian versions of Alexandrov’s Lemma. Each result in the pair
corresponds to a different subcase depending on which side we divide along;
more precisely, the “across version” discusses divisions along the longest
side, while the “future version” discusses divisions along one of the shorter
sides. Since the statements of these lemmata are rather extensive, we only
provide the statement of the latter. The former is illustrated in Figure [2[and
the reader is referred to [14, Proposition 2.42, 2.43] and [15, Lemma 4.2.1,
4.2.2] for more detail, including proofs of the respective statements. While
the presentation in [14] concerns the case K = 0, generalising to non-zero
K is straightforward, provided we assume the associated size bounds.

Proposition 2.9 (Alexandrov Lemma: future version). Let X be a Lorentz-
ian pre-length space. Let A := A(p,q,r) be a timelike triangle satisfying
size bounds for K. Let x be a point on the side [p, ¢], such that the distance
realiser between x and r exists. Then we can consider the smaller triangles
Ay := A(p,z,r) and Ay := A(x,q,r). We construct a comparison situation
consisting of a comparison triangle A; for Ay and A, for As, with p and
g on different sides of the line through [Z,7] and a comparison triangle A
for A with a comparison point Z for x on the side [p, ¢]. This contains the
subtriangles Aj := A(p, &, 7) and Ay := A(Z, §, 7), see Figure

Then the situation Aj,Ap is convex (concave) at z (i.e. £z(q,7) <
£z(p,7) (or >)) if and only if 7(z,r) = 7(z,7) < 7(&,7) (or >). The
same is true if x is a point on the side [g, 7].
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Figure 1: A convex situation in the future version of Alexandrov’s Lemma.
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Figure 2: A concave situation in the across version of Alexandrov’s Lemma.

Note that the convexity (resp. concavity) condition (7(z,q) < 7(Z,q)
(or >)) is automatically satisfied if X has timelike curvature bounded below
(above) by K and A is within a comparison neighbourhood.

2.3 Null distance

The null distance dp induced by a time function T was originally introduced
by Sormani and Vega [54] in the smooth setting, as a convenient way of
equipping a spacetime with a (distance) metric which is compatible with
the causal structure. This concept has also been introduced in the setting
of synthetic Lorentzian geometry, cf. [36].

The null distance between two points is defined to be the infimum over
all piecewise causal curves between those points of the total variation of the

11



associated time function. In the case of a spacetime, if this is achieved it
must be along a piecewise null curve, inspiring the name. However, the null
distance is not necessarily a true distance, and [54, Theorem 4.6] demon-
strates that a sufficient condition for dr to be a distance function is T being
locally anti-Lipschitz.

With regard to our ultimate goal of globalisation, the null distance is also
an ideal way of describing the “size” of a timelike triangle. Contrary to the
metric setting, there are always two notions of size at play in a Lorentzian
pre-length space: on the one hand, we have the T-length of the sides of a
triangle, which may be used to describe timelike curvature bounds, and on
the other, we have the d-length of the sides, which is responsible for whether
or not a triangle is inside a comparison neighbourhood. It will turn out
that particularly well behaved null distances, when combined with timelike
diamonds which are also comparison neighbourhoods, a la [13, Proposition
4.3], form the key to controlling both of these points of view simultaneously.

Although in the next section we directly assume that our space possesses
a time function, we first draw the reader’s attention to the following result,
which provides sufficient conditions for this to be the case.

Proposition 2.10 (Existence of time functions). Let X be a second count-
able, globally hyperbolic Lorentzian length space. Then X possesses a time
function T

Proof. The result is clear upon combining [19, Theorem 3.2] with [1, Theo-
rem 3.20], [53, Lemma 3.8], and [35, Theorem 3.7]. O

We now wish to make the notion of a well behaved null distance more
precise; in particular, we shall require our null distance to be a finite, con-
tinuous pseudo—metricﬂ Before providing conditions under which this must
be the case, we present one further observation.

Lemma 2.11 (Path-connected Lorentzian pre-length spaces). Let X be a
causally path connected Lorentzian pre-length space such that for each z €
X either I'"(x) or I~ (z) is non-empty. Then the following are equivalent:

(i) X is connected.
(ii) X is path connected.

(iii) X is piecewise causal path connected, i.e. any =,y € X can be con-
nected by a continuous curve consisting of future directed and past
directed causal pieces, cf. [36, Definition 3.2].

3By pseudo-metric we mean a metric which does not always distinguish points. Com-
pare with the ‘semi-metric’ applied to the quotient spaces in [15}[53].
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Proof. Two of the implications are clear, so let X be connected and we claim
it is piecewise causal path connected. Let p € X and R, be the set of all
points which are connected to p by piecewise causal paths. We claim that
R, is open and in turn that R, = X: By assumption, for each ¢ € R,, there
exists an r < ¢ (or ¢ < r) and, as X is causally path connected, a causal
curve between them. Hence there is a piecewise causal curve from p to r and
sor € Ry. Similarly, each point in I (r) (resp. I~ (r)) is connected to r (and
hence p) by a piecewise causal curve. So It (r) C R, (resp. I (r) C Rp) is
an open neighbourhood of ¢ contained in R,. As ¢ was arbitrary, it follows
that R, is open. Then {R, |p € X} gives an open partition of X. However,
X is connected, hence the partition must consist of precisely one element,
namely R, = X for all p € X, and X is piecewise causal path-connected. [J

It should be clear that the above lemma holds for Lorentzian length
spaces and this is the context in which we will utilise the result. We also
note that a Lorentzian pre-length space X which is connected and causally
path connected, such that for each z € X one of I'*(z) or I~ (z) is non-
empty, is automatically sufficiently causally connected, see |36, Definition
3.4]. The equivalence between path-connected and piecewise causal path-
connected was also noted by [36, Lemma 3.5] and [54, Lemma 3.5] in their
respective settings.

In the following proposition we demonstrate that the null distance on
a connected Lorentzian length space satisfies all of the requirements of a
distance function other than separation of points, even if we do not assume
that the associated time function is locally anti-Lipschitz (cf. [54, Lemma
3.8] for a corresponding result on spacetimes).

Proposition 2.12 (Null distance is a finite, continuous pseudo-metric). Let
X be a connected Lorentzian length space with a (not necessarily locally
anti-Lipschitz) time function 7" and metric d. The null distance dr, induced
by T, is a finite pseudo-metric which is continuous (with respect to d).
Moreover,

p<q=dr(p,q) =T(q) —T(p). (2.3)

Proof. By our previous discussion, every connected Lorentzian length space
is sufficiently causally connected. The fact that dp is a finite pseudo-metric
then follows directly from [36, Lemma 3.7]. Similarly, continuity of dr and
follow from [36, Proposition 3.9] and |36}, Proposition 3.8.(ii)], respec-
tively. O

The diameter of a subset in a metric space is a well known concept, which
also makes sense when considering such a pseudo-metric. In particular, due
to the nature of T" and dp, the dp-diameter, denoted by diamy, of a causal
or timelike diamond is simply the difference in T-values of its endpoints, i.e.
diamp(I(p,q)) = diamp(J(p,q)) = T(q) — T(p). Indeed, if z,y € J(p,q)

13



then the two piecewise causal curves from x to y with one breakpoint at
either p or g together have length 2(T'(¢q) — T'(p)) and so one of them must
have length bounded above by T'(q) — T'(p). Viewing an admissible causal
triangle as the union of the images of the curves corresponding to its sides,
we therefore have diamy(A(p, q,7)) = T'(r) —T'(p). Of course, from a metric
point of view, any admissible causal triangle is degenerate with respect to
dT, i.e.

dT(pv T) = dT(pv Q) + dT(Qa T) : (24)

In the next section we shall put the key we have just constructed into ac-
tion and finally prove the Toponogov Globalisation Theorem for Lorentzian
length spaces.

3 Lorentzian Toponogov Globalisation

The main goal of this section is to prove a synthetic Lorentzian analogue
of Toponogov’s Globalisation theorem for lower timelike curvature bounds.
This will be proven in the setting of connected, globally hyperbolic, regu-
lar Lorentzian length spaces having a time function. As previously noted,
second countability is sufficient for the existence of a time function.

However, before we dive into the proof proper, we first require a small
collection of essential lemmata. To begin, recall that globally hyperbolic
Lorentzian length spaces X are geodesic with finite and continuous time
separation 7 [35, Theorems 3.28 and 3.30]. Thus, in this case, and
from Definition (curvature bounds in the sense of angle comparison) hold
for U = X, i.e. globalisation of these properties is automatic for such spaces.
We will also use the geodesic nature of globally hyperbolic Lorentzian length
spaces implicitly throughout the remainder of this section, to avoid concerns
regarding the existence of distance realisers.

Our next result is a slight adaptation of the Lebesgue Number Lemma,
which allows us to properly configure coverings of causal diamonds by small
and well behaved timelike diamonds.

Lemma 3.1 (Lebesgue Number Lemma, Lorentzian version). Let X be a
connected, globally hyperbolic, Lorentzian length space with T': X — R a
time function on X and let dp be the associated null distance. Consider any
causal diamond J(z,y) in X and let {D;}? | be an open cover of J(z,y)
consisting of timelike diamondsﬁ Then there exists an € > 0 such that
any causal (and hence any timelike) diamond with dp-diameter less than &
contained in J(x,y) is also contained in one element of the covering.

“Such an open cover must exist by [53, Corollary 3.6] and [35, Theorem 3.26.(v)].
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Proof. The main difference when comparing to the original version of the
Lebesgue number lemma is that dr is only a finite, continuous, pseudo-
metric in general, as a result of Proposition The causal structure of
diamonds and its interplay with the null distance will be crucial in the proof.

Firstly, if J(x,y) C D; for some ¢ then we can choose € arbitrary and we
are done. Otherwise, denote by C; := J(x,y) \ D; the complement of D; in
J(x,y). Define a function f : J(z,y) — R via

fo) = _max dr(p.Con) (7 () 0T~ () (3.1

Note that the infimum in the definition of dr(p,C; N (J*(p) U J~(p))) is
attained as C; N (JT(p) U J~(p)) is a closed subset of J(x,y) and hence
compact. We now show that f(p) € (0,00) for all p.

If f(p) were 0 for some p € J(z,y), by the closedness of C; N (J*(p) U
J~(p)) and because p € (J"(p) U J (p)), we infer p € C; for all i, i.e.
p ¢ D; for all i. As the D; cover J(x,y), we arrive at the contradiction
p ¢ J(z,y). If f(p) = oo for some p, then there exists some i such that
Cin(Jt(p)UJ~(p)) = 0. Indeed, as all of these sets are compact and the null
distance is finite valued, the maximum of finitely many infima can only be
infinite if (at least) one of the sets is empty. Thus, J(z,y)N(J*(p)UJ " (p)) C
D;, and hence xz,y € D;. As D; is a timelike diamond and therefore causally
convex, this implies J(z,y) C D;, which we treated separately.

As the sets C; N (JT(p) U J~(p)) are all compact and the null distance
is continuous, it follows that f is continuous and hence attains its minimum
value. Consequently, set e := minp¢ j(,,) f(p) > 0. Now let p,q € J(z,y)
with p < ¢ and diamr(J(p,q)) = dr(p,q) < . As f(p) > e, there exists i
such that dr(p, C;N(J T (p)UJ(p)) > €. Then clearly, p ¢ C;. Furthermore,
p < q and dr(p,q) < €, hence also ¢ ¢ C;. Thus, p,q € D; and by the causal
convexity of diamonds, also J(p,q) C D;. O

We now turn to proving the most essential synthetic Lorentzian tool
required for the proof of the Globalisation Theorem. Recall that the so-
called Gluing Lemma for triangles with upper curvature bounds, |15, Lemma
4.3.1, Corollary 4.3.2], roughly states that when two subtriangles satisfy the
same curvature inequalities, then a large triangle formed by combining the
two must also satisfy that curvature bound. The Gluing Lemma (and hence
the Lorentzian analogue of the Reshetnyak Gluing Theorem [15, Theorem
5.2.1]) is not valid in full generality for lower curvature bounds, as not all of
the inequalities in the Alexandrov Lemma [2.9| point in the same direction
in this case.

However, we propose the following result, in the spirit of the Gluing
Lemma, under lower curvature bounds. In essence, if the angle condition
fails to hold at a vertex in a timelike triangle then, upon splitting the triangle
into two timelike subtriangles along one of the adjacent sides, then at least
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Figure 3: If the angle condition at p in A(p,q,r) fails to hold (in black),
then at least one of the three angles conditions (in red) at = or p in the
smaller triangles fail to hold.

one angle condition must fail in one of the two subtriangles. In particular,
the failing angle condition(s) will either be at the original vertex (viewed as
part of a subtriangle), or at the point at which we split the adjacent side.

Lemma 3.2 (Gluing Lemma for timelike triangles, lower curvature bounds).
Let X be a globally hyperbolic, regular Lorentzian length space with cur-
vature bounded below by K € R in the sense of angle comparison. Let
A(p,q,r) be a timelike triangle in X (which is not necessarily contained in a
comparison neighbourhood), where the sides are given by distance realisers
a from p to r, f from p to ¢ and ~ from ¢ to r, respectively. Let A(p, q,7)
be a comparison triangle for A(p, ¢,r) and assume that the angle condition
fails to hold at p in A(p,q,r), i.e. £p(a,B) < £3(q,T).

Let x be a point on S. Then at least one of the following three angle
conditions fails to hold: the angle conditions at x and p in A(p,z,r) and
the one at z in A(z,q,r) (see Figure (3.

An analogous statement holds if = is on a and timelike related to g, or if
the angle condition initially failed at r (and the subdividing point x is on ~
or on « and timelike related to ¢) or at ¢ (and z is on either g or ), instead
of p.

Proof. We prove the result for the case where the angle condition fails to hold
at pin A(p,q,r) and x is on 8. Denote a distance realiser (which exists since
X is globally hyperbolic) from z to r by . Denote by 5_ and 4 the parts of
B which go from x to p and from z to g, respectively. Assume that the angle
condition at p in A(p,z,r) holds, i.e. 4p(a,S-) > £5(Z,7), otherwise we
are done. We now show that the angle condition at x in A(p,x,r) or at = in
A(z,q,r) must fail. To this end, consider comparison triangles A(p, z, 7) and
A(z,q,7) for A(p,x,r) and A(z,q,r), respectively, as well as a comparison
triangle A(p,q,7) for A(p,q,r). Let & be the comparison point for z in
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A(p,q,7) and consider the subtriangle A(p, z,7). A(p,z,7) and A(p,z,T)
have two sides of equal length, and for the angles at p and p we know

£p(@,7) < Lp(a, B) < £5(q,7) = £5(2,7) . (3.2)

Thus, law of cosines monotonicity gives 7(x,r) = 7(&,7) > 7(Z,7) and
so, by the Alexandrov Lemma the comparison triangles A(p, z,7) and
A(Z,q,7) form a concave situation, i.e.

ii(pv f) < Ai((ja f) . (33)

Moreover, by Proposition we have £, (B—,n) = £z(n, f+). If the angle
condition were to hold both at x in A(p,z,r) and at = in A(zx,q,r), then we
would have

Lz(p,7) > £2(B-,n) = £Lu(n, By) > £z(q,7), (3.4)

a contradiction to . Hence, the angle condition must fail at « either in
A(p,x,r) or Az, q,r), if it does not fail at p in A(p, z, 7).

For the remaining cases, the proof is similar, upon using the appropriate
version of the Alexandrov Lemma (cf. [15, Lemma 4.2.1] or |14, Proposition
2.42]). O

As should be clear from the proof, this gluing property also holds for
strongly causal, locally causally closed, regular Lorentzian pre-length spaces
with curvature bounded below in the sense of angle comparison.

Using the previous lemmata, we can now prove two results which, when
taken together, allow us to prove our main theorem. One key difficulty in
generalising globalisation to the Lorentzian setting is that splitting a timelike
triangle along the longest side does not, in general, produce two timelike
triangles. This issue is handled by the first result, which demonstrates that
if any angle fails, it is always possible to assume that an angle of type o = +1
fails.

Proposition 3.3 (Failing angles can be assumed to be of type o = +1).
Let X be a connected, globally hyperbolic, regular Lorentzian length space
with time function T and curvature bounded below by K € R in the sense
of angle comparison. Let 0 < ¢ < 1. Let A = A(p,q,r) be a timelike
triangle in X which satisfies the size bounds for K and for which the angle
condition fails at some vertex. If the angle condition holds at each angle in
every timelike triangle A(p', ¢, ") with

H)p<p < <r <rand
(ii) dp(p',r") < (1 —¢e)dr(p,r)

then there is at least one timelike triangle A(p”, ¢”,r") with p < p" < ¢’ <
r" < r such that the angle condition fails at ¢”.
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q0 = q1

Figure 4: The angle condition (black) originally fails to hold at py in
A(po, qo, 7). After the first subdivision (dashed), the angle condition (red)
fails to hold at p; in A(p1,q1,7). After the second subdivision (dotted), the
angle condition (blue) fails to hold at ps in A(ps, g2, 7).

Proof. Without loss of generality, assume that the angle condition in A fails
at p (the case where it fails at r is analogous under reversal of the time
orientation, while if it fails at ¢ the result is trivially satisfied).

Splitting the side [p, ] into two pieces at some z € [p,q|, say the dp-
midpoint, by Lemma we get that either an angle condition fails at = in
A(p,z,r), in which case the result follows, or at either p in A(p,z,r) or x
in A(z,q,r). In either of the two latter cases, we rename the triangle where
the angle condition fails by A(p1, g1, 7), with the angle condition now failing
at p;. (Both triangles may have a failing angle condition, in which case we
may simply pick one at random.) This procedure can be repeated arbitrarily
many times (see Figure [4]) and, if no positive angle fails at any stage, this
will result in a sequence of pairs p,, < ¢, on the side [p, ¢] such that the angle
conditions in A(py, qn,7) fail at p,. If the new subdivision point (which is
either relabelled to p, or ¢,) is always chosen to be the midpoint of the side
[Prn—1,qn—1] in the dp metric, then dr(py,¢,) — 0 and, since these points
lie on the distance realiser [p, ], it must be the case that p, and g, have a
common limit point p* € [p, q] with p, 7 p* and ¢, N\ p*.

If dr(p*,r) < (1 —¢)dr(p,r), then dr(pn,r) < (1 —¢)dr(p,r) for large n
so that A(pp, gn,r) is already sufficiently small that it cannot have a failing
angle, yielding a contradiction. However, this need not hold and it may be
necessary to split the long side [p,, 7] in the following manner.

Let . be the point on the intersection of some distance realiser p,r with
dJ " (qn) (by regularity, this point of intersection is unique). By compactness
of J(p,r), we may, after passing to a subsequence if necessary, assume that
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!, is convergent with r], — r*. By construction, 7(g,,r},) = 0,¢, < r/,, and
hence by continuity of 7 and the closedness of the causal relation, we get
T(p*,r*) = 0,p* < r*. Moreover, we have 7(p,,r) = 7(pn, 7)) + 7(r,r) and
hence again by continuity, 0 < 7(p*,r) = 7(p*,r*) + 7(r*,r), so the three
points lie on a distance realiser. By regularity, the segment [p*, | is timelike,
so T(p*,r*) =0 = p* =r*.

For sufficiently large n, then, we may take a point r,, slightly to the future
of v/, on the segment p,r. Then p,, ¢, and r, are all so close to p* that
the timelike triangle A(py, gn, ) has dp(pp,rn) < (1 —¢)dr(p,r). Splitting
the triangle A(py, ¢n,7), which has an angle condition failing at p,,, through
GnTn using Lemma results either in an angle condition failing at r, in
A(gn,Tn, 1), so that the result follows, or at p, or r, in A(py, ¢n, ), which
is not possible since A(py, gn,Ty) is sufficiently small in the dr metric. [

Following the work of Plaut across two papers [51,52], Lang and Schroeder
[37] provided a “cat’s cradle” construction for use in proving Toponogov’s
theorem for metric length spaces. Independently of and in parallel to this,
Petrunin [3] also derived a similar, elegant scheme. In our second result,
we demonstrate that this construction can also be used in the Lorentzian
setting, despite the challenge posed by the fact that triangles with short
side lengths (in 7) need not be small topologically. This rules out the failure
of angles of type ¢ = +1, provided that a collection of smaller triangles
obey the angle condition at each of their vertices, essentially completing the
proof.

Proposition 3.4 (Cat’s cradle). Let X be a connected, globally hyperbolic,
regular Lorentzian length space with time function 7" and curvature bounded
below by K € R in the sense of angle comparison. Let 0 < € < % and let
A = A(p, q,r) be a timelike triangle in X which satisfies the size bounds for
K. If, for every timelike triangle A(p', ¢, r’") with

H)p<p<¢<r" <rand

(i) dr(p',r') < (1 = €)dr(p,7)

the angle condition holds at all vertices of A(p',¢’,7’), then the angle con-
dition also holds at ¢ in A.

Since the following proof is rather extended, we first offer a brief overview.
The cat’s cradle construction (see Figure [5) is a recursive decomposition of
A into smaller triangles designed to ensure that the angle condition holds
for the o = +1 angle opposite the longest side, namely for the angle at q.
From this construction, we infer a sequence of inequalities . We then
continue with a similarly recursive construction in the model space, assem-
bling a sequence of comparison triangles to infer a sequence of inequalities
(3.6). Finally we show that the two sequences of inequalities converge to
the same limit, which implies that hinge comparison at ¢ cannot fail.
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Proof. To begin, set L := dp(p,r) and qp = g. Assume without loss of
generality that dr(p,qo) > dr(qo,r), otherwise the roles of p and r should
be interchanged. Let g1 be the point on the distance realiser [p, go] such thatﬂ
dr(p,q1) = L, from which it follows by that dr(q1,7) = (1—¢)L. Now
A1 = A(q1, qo, ) is a timelike triangle satisfying conditions of the statement,
hence the angle condition holds at all vertices of A; by assumption.

T=1
T=(1-¢)L
T=¢L
T=0

Figure 5: The cat’s cradle construction, showing the first three subtriangles
A1, Ag and Ag.

We continue this construction recursively, picking points ¢,,, depending
on whether n is odd or even, to form new triangles. For even n, pick ¢, on the
distance realiser [¢,—1,7] so thatﬁ dr(gn,r) = eL and dr(p,qn) = (1 — ¢)L.
This defines a triangle A, = A(p,gn—1,¢n) for n > 1. Similarly, for odd
n, pick g, on the distance realiser [p,g,—1] to define A,, = A(gn, gn—1,7).
In both cases, A,, satisfies the conditions of the statement and so the angle
condition holds at all vertices of A, by assumption.

Consider now the angles in A,. Let 6, = £, ,(p,r) be the angle
at gn—1, which is given by £, ,(p,qn) or £g, (gn,r) in A,, when n is
respectively even or odd. Denote by ¢, the angle at ¢, in A,,, which will
be adjacent to 0,41 in the subsequent triangle. When n is even, ¢, is
&g, (qn-1,p), while for odd n, the angle is £, (gn—1,7). In either case,
Yn = Op41, but with opposite signs o, by Proposition

°By (24), dr(p,q0) > 1L and as € < 3, it follows that dr(p,-) attains L within the
distance realiser [p, qo].
5 Again, such a gy, exists as dr(gn—1,7) = (1 —&)L > eL.
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Set 1, = 7(p,qn) + 7(qn, ), for n > 0. By applying the reverse triangle
inequality to each A,, (recalling that these are defined for n > 1), we have

0<l0§l1§...§7’(p,7’). (35)

Indeed, for odd n, we have l,—1 = 7(p,qn-1) + 7(qn-1,7) = T(p,qn) +
T(qny Gn-1) + 7(@n-1,7) < 7(D,qn) + 7(qn,r) = l,, and for even n a similar
argument can be used. The initial, strict inequality is due to A(p,qo,r)
being non-degenerate, while the final inequality in the chain follows from
applying reverse triangle inequality to A(p, ¢n,7). The sequence {(l)}n>0
in is a Cauchy sequence, as it is monotone increasing and bounded
above by 7(p,r) (which is finite by size-bounds). Therefore, we have that
ln+1 —ln, — 0. This value is the excess in the triangle A,,, that is, the value
by which the longest side exceeds the sum of the two shortest sides (see
Figure |5). For n even, this is 7(¢n+1,7) — 7(gn,7) — T(qn+1, ¢n). For n odd,
on the other hand, this is 7(p, gnt+1) — 7(P, gn) — T(@ns Gn+1)-

Claim: For some subsequence n;, the time separation between the ver-
tices gn,—1 and g, of the triangle A, is uniformly bounded away from zero.

Proof of claim: For a contradiction, assume that the claim is false.
Then we have lim,, o0 7(q2n—1, ¢2n) = limy 00 7(g2n+1, g2n) = 0. Consider
the sequence of triples {(g2n—1,42n; @2n+1) }n>1, which lies in the compact
set J(p,r)x J(p,r)x J(p,r). After passing to some subsequence n;, we have
that these converge to a limit triple (qq, g, gc). Inspecting the time function,
we see T'(qan—1) = T(q2n+1) # T(q2n), hence qq # qp» # q.. Furthermore, by
continuity of 7, we have 7(¢q, ) = 7(¢c, @) = 0.

Again by continuity of 7, we have 7(p, q¢.) + 7(qc, @) = 7(p, q) and by
causal closedness, we have p < ¢q. < qp. In particular, p, q., and ¢ lie on a
distance realiser with a non-constant null piece [g., ¢5]. Thus, by regularity,
the whole distance realiser must be null and therefore 7(p, g5) = 0.

Similarly, from 7(qa, g») + 7(qp, ) = 7(qa,7) and ¢, < g, < 7, we obtain
that q,,q, and r lie on a distance realiser which is null, so 7(g,r) = 0
(see Figure @ Therefore, lim;_yo0 l2n, = limj—so0 (7(p, g2n;) + 7(q2n;, 7)) =
7(p,qp) + 7(qp, ) = 0. However, states that [, is a non-decreasing se-
quence, beginning with [y > 0, which yields a contradiction. Claim proven.

Let p, = p and 7, = r for all n > 0. We now carry out a similar
construction in the model space L?(K) by arranging comparison triangles
A, (see Figure[7) for A,. Since, in general, the angles in A,, do not match
those in A, the construction in IL?(K) does not fit together as neatly.

In fact, we begin by considering a comparison hinge ([qo, o], [go, To], @1)
in L2(K) for ([qo,Po]; [q0,70],01); here, (po, Go, 7o) is a triple of points such
that 7(po, o) = 7(po, qo), 7(Go, 7o) = 7(qo,70), and the angle w; between the
distance realisers [go, Po|, [0, To] satisfies w; = 61. In particular, there is no
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gc qa

Figure 6: The limiting configuration of the cat’s cradle, demonstrating that
side lengths are bounded away from zero.

a priori restriction on 7(pg, 7o) and instead we set out to obtain one (we are
not considering a comparison triangle for A, for example).

Using our hinge, we now recursively construct the comparison triangles
A,, for n > 1. For odd n, fix g, on the distance realiser [p,_1,Gn_1],
such that 7(pn—1,Gn) = T(Pn—1,qn). Then choose 7, such that the timelike
triangle A, = A(Gn, Gn_1,7n) has the same side lengths as A,,. Finally, set
DPn = Pn—1. For even n, similarly fix g, on the distance realiser [G,—1,7n—1],
such that 7(Gn, 7n—1) = 7(qn,n—1), construct a comparison triangle A, =
A(pna Gn—1, Cjn)a and set 7, = 7, 1.

The choice of the two new points at each stage again defines new angles.
Denote by 6, the angle in A, at g, 1 (note that 6, = an_l(qn,rn) for n
odd and 6,, = anfl(qn,pn) for n even), by @, the angle in A, at g, and
by @p41 the angle of the remaining open hinge ([gn, Pn], [Gn, 7)) adjacent to
@n, see Figure [7] Note that @, = @41, but with opposite sign, again by
Proposition [2.5]

As the angle condition holds at ¢, and ¢, in A, by our assumptions,
we have 6,, < 0, at ¢,—1, and at ¢,, the type 0 = —1 angle satisfies @, > @y.
Furthermore, by construction @; = 6; and by the above 6; < 81, so @ < 6.
More generally, using the inequalities for ¢, and 6, borne from the angle
conditions holding in each A,, as well as equality of adjacent angles (see
Proposition , we obtain W, = @n_1 < Yp_1 = O, < 9,, for all n > 2.
Therefore, we have @, < 6, for all n > 1, such that the relative sizes of
the angles are indeed as depicted in Figure [} Hence, by law of cosines
monotonicity (Corollary , we have 7(pp—1,7n—1) < 7(Pp, 7). Thus, the
sequence of inequalities

7(po, 7o) < 7(p1,71) < ... (3.6)

holds.
Consider again the subsequence n; from the claim above. Since in A,
the length of the (short) side [gn,—1,¢n,] is uniformly bounded away from
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Figure 7: The comparison construction of the cat’s cradle. Not marked for
n > 2 are the angles w, which are adjacent to ¢,_1, and are located in
approximately the same position as 6,,.

zero on this subsequence, the same is true of the length of the side [gn,—1, @n,]
in A,,,. Note that this implies the length of the longest side in A, is also
uniformly bounded away from zero. Hence, the angle ¢, lies between two
timelike sides of the triangle A,,, whose lengths are uniformly bounded away
from zero, where the excess of A,,, (being equal to that of A,,,) is approaching
0. This means that this sequence of configurations approaches a line, and
not a point, so that ¢,,, — 0. It follows from w,4+1 = ¢y, that w,, 1 — 0. As
Wn,+1 1s given by A{qni (Pn,;, 7n;), we conclude that, along our subsequence,
T(Pnys Tng) — T(Pnygs Gng) — T(Gngs Tny) = T(Pnys Tny) — ln; — 0. In other words,
the difference of the terms of the sequences in and is converging
to 0.

Finally, assume that 7(p,r) < 7(po, 7o), that is, the hinge condition |12}
Definition 3.14] fails at ¢ in A. Set C := 7(po,70) — 7(p,7) > 0. Since
T(PnsTn) — ln > 7(Po,70) — 7(p,r) for all n > 0 by and (3.6), we
have 7(pp, ) — I, > C > 0 for all n, contradicting the fact that, on n;,
T(Pn,Tn) — ln — 0. Tt follows, therefore, that the hinge condition must hold
at ¢ in A. Since hinge comparison and angle comparison are equivalent, see
Proposition the claim follows. O

Collecting the previous two propositions, we can deduce that the angle
conditions hold in the large as long as they hold in the small. We formalise
this statement here and will apply it in the proof of the main theorem.

Corollary 3.5 (Core argument of Lorentzian Toponogov Globalisation).
Let X be a connected, globally hyperbolic, regular Lorentzian length space
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with time function 7" and curvature bounded below by K € R in the sense of
angle comparison. Let 0 < & < % Let A = A(p,q,r) be a timelike triangle
in X which satisfies the size bounds for K. If, for every timelike triangle
A(p', ¢, r") with

)p<p<d<r <rand
(ii) dr(p',7") < (1 —e)dr(p,7)

the angle condition holds at all vertices of A(p/,¢’,7’), then the angle con-
dition also holds at each angle in A.

Proof. First, observe that our assumptions include the criteria for Propo-
sition to hold. In particular, the angle condition must not fail at ¢ in
A. Now assume for a contradiction that the angle condition fails at ei-
ther p or r in A. Then by Proposition there exists a timelike triangle
A" = A", q",r") with p < p”’ < ¢" < " < r, such that the angle
condition fails at ¢”.

Furthermore, we have dp(p”,r") < dp(p,r), via our discussion around
(2.4). Suppose that A(p',¢’,7') is a timelike triangle with p” < p' < ¢ <
' <7r" and dp(p',r") < (1 —e)dr(p”,r”). Then it is also the case that p <
P <qd <" <randdp(p,r) < (1—e)dr(p,r). By the initial hypothesesm
then, the angle condition holds at all vertices of all such A(p',¢,r’") and
so Proposition may be applied to A”, to show that the angle condition
cannot fail at ¢”, yielding a contradiction. Hence the angle condition must
also not fail at p or 7 in A and our result follows. O

The previous result shows that the angle condition holds at all vertices
of an arbitrarily large triangle, under the assumption that the angle condi-
tion holds for all vertices in a certain proportion of the smaller triangles in
the space. It remains to show that (local) lower curvature bounds provide
sufficiently many triangles with no failing angle condition for the above as-
sumption to hold for each and every triangle. That is, no triangle possesses
a vertex at which the angle condition fails.

Theorem 3.6 (Lorentzian Toponogov globalisation). Let X be a connected,
globally hyperbolic, regular Lorentzian length space with a time function T’
and curvature bounded below by K € R in the sense of angle comparison.
Then each of the properties in Definition [2.6] hold globally; in particular,
the entire space X is a (> K)-comparison neighbourhood and hence has
curvature globally bounded below by K.

"Here we show that Proposition holds for A” with the same ¢ as A. In fact, if
A satisfies the assumptions of the proposition for some ¢, as dr(p”,r") = ddr(p,r) for

§ € (1 —¢,1], then A" does so for any value in [1 — 152, 1).

24



Proof. First note that Definition [2.6(iv)|is a local condition, only requiring
the germs of curves, hence it globalises trivially. Recall from the opening
of this section that Definitions [2.6(1) and [2.6{(ii)| also hold globally under
our assumptions. It remains to check Definition [2.6{(iii)| for arbitrarily large
triangles in X.

Let A = A(p, q,r) be a triangle in X, which we may assume to be time-
like by [12, Remark 3.12], such that the angle condition fails at some vertex
in A (this also permits triangles where the angle condition fails at multi-
ple vertices). Clearly, A is contained in the causal diamond J(p, ), which
is compact by the global hyperbolicity of X. Suppose § > 0 is a greatest
lower bound on the size of timelike triangles in J(p, ) which exhibit a failing
angle condition. In particular, any timelike triangle with dp-diameter less
than 0 satisfies the angle condition, and there are triangles with dp-diameter
greater than yet arbitrarily close to § that exhibit a failing angle conditiorﬁ
Applying Corollary to such triangles yields a contradiction which proves
the result.

All that remains is to establish the existence of the greatest lower bound
d. Let A be the set of dp-diameters of triangles in J(p,r) with a failing
angle condition. By assumption, an angle condition fails in A(p,q,r), so
dr(p,r) € A and A # (). Tt follows that A has a greatest lower bound, which
we now verify is positive by demonstrating the existence of some positive
lower bound. By [13, Proposition 4.3]E|, we can cover J(p,r) by finitely
many timelike diamonds which are all comparison neighbourhoods. Then
by Lemma there exists some ¢’ > 0, such that any timelike diamond of
dp-diameter less than ¢’ contained in J(p,r) is contained in an element of
this covering. In particular, any timelike triangle of dp-diameter less than
0’ is contained in a comparison neighbourhood and so has no failing angle
conditions. It follows that ' is a positive lower bound for A. O

An application of Proposition also yields that, provided (2.2)) holds,
lower curvature bounds in the sense of hinge, monotonicity, and triangle
comparison also globalise.

4 Applications and Outlook

Finally, in this section we demonstrate the application of our results to the
wider field of synthetic Lorentzian geometry and discuss potential refine-

8Tt is not strictly necessarily that § be a greatest lower bound. This allows us to apply
our propositions with an arbitrarily small constant € > 0, but they are stated for any
0<e< 3.

9Recall that any globally hyperbolic Lorentzian length space is both non-timelike lo-
cally isolating and strongly causal. Furthermore, although |13, Proposition 4.3] is formu-
lated in terms of distance comparison, it is clear that the proof also holds for curvature
bounds in terms of angle comparison.
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ments of the globalisation theorem along with some open problems.

4.1 Gromov—Hausdorff convergence

We begin by taking inspiration from the metric setting and consider the
stability of curvature bounds under Gromov—Hausdorff convergence, a result
which has been crucial for the proofs of finiteness results in Riemannian
geometry.

Prior to the development of Alexandrov geometry as an independent
subject, it was already understood that limits of Riemannian manifolds with
sectional curvature bounded below are length spaces with curvature bounded
below, in the sense that the conclusion of the Toponogov comparison theo-
rem and certain nice topological properties hold [30]. This insight was used
to prove a variety of finiteness, pinching and rigidity results [28]/29,31}45./62].
The proof of the globalisation theorem for general Alexandrov spaces [18]
placed this on a much clearer footing. It ensures that lower curvature bounds
in the triangle comparison sense always survive Gromov—Hausdorff conver-
gence, since there is no possibility that the size of comparison neighborhoods
shrinks to zero along the sequence. Perelman used Alexandrov geometry to
prove a much more powerful homeomorphism finiteness result for Alexan-
drov spaces and hence Riemannian manifolds [47], which has been gener-
alised further to the setting of Riemannian orbifolds [33].

Gromov—Hausdorff convergence is most natural in the compact setting
and can then be generalised to the non-compact case. As most interesting
Lorentzian examples are non-compact, however, it is difficult to establish
a general notion of convergence in this setting. Minguzzi and Suhr have
provided an excellent notion of convergence for “bounded Lorentzian metric
spaces” [41] and in the globally hyperbolic case this can be applied to causal
diamonds, as we will soon show.

For any reasonable notion of Gromov-Hausdorff convergence of Lorentz-
ian length spaces, we should expect that the condition of a timelike lower cur-
vature bound is stable. This general principle is illustrated by Theorem [4.2]
which brings together the globalisation result for spaces in the Kunzinger—
Samann sense with the convergence result for spaces in the Minguzzi—Suhr
sense.

A bounded Lorentzian metric space is a topological space with a contin-
uous time separation function satisfying a boundedness property ({(p,q) :
7(p,q) > e} is compact for all ¢ > 0) and distinguishing points (if p # ¢
then for some r either 7(p,r) # 7(q,r) or 7(r,p) # 7(r,q)). It is a bounded
Lorentzian length space in the sense of Minguzzi—Suhr if timelike related
points are connected by maximal causal curves.

We begin with a lemma to show that causal diamonds are bounded
Lorentzian length spaces in the Minguzzi—Suhr sense (after removing the
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spacelike boundary). Note, however, that causal diamonds are not Lorentz-
ian length spaces in the Kunzinger—-Sdmann sense, since they are not local-
isable.

Lemma 4.1 (Bounded Lorentzian length spaces and causal diamonds). Let
X be a globally hyperbolic, regular Lorentzian length space (in the sense
of Kunzinger-Sémann, as used throughout this paper) and let J(p,q) be a
causal diamond in X. Let S be the set of points in J(p,q) which are not
timelike related to any other point in J(p,q) — the “spacelike boundary” of
the diamond. Then J(p,q) \ S is a bounded Lorentzian length space in the
sense of Minguzzi—Suhr.

Proof. Let J(p,q) be a causal diamond in a globally hyperbolic Lorentz-
ian length space. By global hyperbolicity, T is continuous with respect to
the metric topology and, since J(p, ¢q) is compact and 7 vanishes on S, the
boundedness property holds on J(p,q) \ S.

The final requirement for J(p,q) \ S to be a bounded Lorentzian metric
space is that 7 distinguishes points. We adapt the argument from [1] which
shows that globally hyperbolic Lorentzian length spaces have the stronger
property of being past- and future-distinguishing. Assume for a contradic-
tion that z,y € J(p,q) \ S are different points, which are not distinguished
by 7. In particular, I~ (z) = I (y) and I*(z) = I'*(y). If the points are
timelike related to each other, this contradicts chronology, which is implied
by global hyperbolicity.

Consider now the case when x and y are not timelike related. Since
x ¢ S, at least one point in J(p,q) \ S is timelike related to x. Then, x
is joined to that point by a timelike curve in J(p,q) and so is the limit of
some sequence T, with the entire sequence lying either in I~ (x) or I (x).
Without loss of generality, suppose x,, € I (z). Since I~ (z) = I~ (y), we
also have z, € I~ (y). Hence, x € J (y), with 7(x,y) = 0 and = # y.
As 7 does not distinguish = and y, we have 7(z,,x) = 7(zy,y) > 0, from
which it follows that the broken distance realiser from z, to = to y is a
distance realising curve of mixed causal character, contradicting regularity.
Therefore J(p,q) \ S is a bounded Lorentzian metric space.

By global hyperbolicity again, any two points in J(p,q) are connected
by a distance realiser lying in J(p,q). By regularity, this must in fact lie
inside J(p,q) \ S, which is therefore a bounded Lorentzian length space in
the sense of Minguzzi—Suhr. O

Theorem 4.2 (Stability of lower curvature bounds). Let X; be a sequence
of connected, globally hyperbolic, regular, Lorentzian length spaces with
time functions and curvature bounded below by K € R in the sense of angle
comparison. Let J; = J(p;, q;) be a sequence of causal diamonds in X; and
let S; be the spacelike boundary of J;. If the sequence J; \ S; converges
in the sense of Minguzzi-Suhr to some J, then J is a bounded Lorentzian
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length space with sectional curvature bounded below by K in the sense of
Minguzzi—Suhr.

Proof. Each J; \ S; is a bounded Lorentzian length space in the sense of
Minguzzi-Suhr, by the previous lemma. By Theorem [3.6] these spaces have
a global lower curvature bound in any of the senses mentioned in Proposition
In particular, J; \ S; has curvature globally bounded below by K in the
sense of timelike triangle comparison, which is precisely the definition of
sectional curvature bounded below by K in the sense of Minguzzi—Suhr.
By [41, Theorem 5.18], the limit J is a bounded Lorentzian length space
in the sense of Minguzzi-Suhr. and by [41, Theorem 6.7], it has sectional
curvature bounded below in the sense of Minguzzi—Suhr. O

In particular, an application of Proposition [2.7] also yields that, provided
holds on each X;, lower curvature bounds in the sense of hinge, mono-
tonicity, and triangle comparison are also stable under convergence, in the
same sense, i.e. the limit space has sectional curvature bounded below in
the sense of Minguzzi—Suhr.

4.2 Geometric consequences

There are also several direct corollaries to Theorem [3.6] which extend known
results for spaces with global timelike curvature bounds to those with local
timelike curvature bounds, under the assumptions of our Toponogov-style
Globalisation Theorem. In what follows, we present two such results, namely
the Bonnet—Myers Theorem and Splitting Theorem.

First proven by Bonnet in two dimensions, the Bonnet—-Myers theo-
rem states that a complete Riemannian manifold with sectional curvature
bounded below by some positive k € R, has diameter diam(M) < % For
dimensions greater than two, the result was formalised by Myers [43], who
later demonstrated that the weaker assumption of a positive lower Ricci
curvature bound was sufficient to obtain an associated upper bound on
the diameter [44]. A corresponding synthetic result appears in |17, The-
orem 10.4.1], where complete metric length spaces with sectional curvature
bounded below by some &k > 0 are shown to also satisfy diam(X) < ﬁ

Bonnet—Myers-style theorems also appear in the literature of Lorentzian
geometry. In the smooth setting, Beem and Ehrlich [9, Theorem 9.5] have
shown that globally hyperbolic spacetimes with timelike (sectional) curva-
ture bounded below by some negative K € R have diam(M) < JjT’ where
the diameter is now defined in terms of the Lorentzian distance function in-
duced by the spacetime metricm In the synthetic Lorentzian setting, where

107 orentzian distance functions are, in essence, time-separation functions which are
induced by a Lorentzian metric, in much the same way that a Riemannian manifold
induces a distance.
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the diameter is defined in terms of the time-separation function 7, Cavalletti
and Mondino [20, Proposition 5.10] have shown that measured Lorentzian
pre-length spaces with suitable timelike measure contraction property (in-
cluding a lower Ricci curvature bound), also have an upper bound on their
diameter.

Observe how, while the metric theorems consider k > 0, the Lorentzian
results concern K < 0. This is not quite as superficial a change as it might
first seem; it is a consequence of the hierarchy of curvature bound implica-
tions being reversed, following the conventions set by [9,35]. In particular, in
the metric setting, curvature bounded below by k implies curvature bounded
below by all k¥’ < k, whereas in the Lorentzian setting, curvature bounded
below by K implies curvature bounded below by all K/ > K. A similar
statement holds for upper curvature bounds, but with the inequalities re-
versed. Although we adhere to these conventions throughout this paper,
they are by no means ubiquitous. For example, [4,[20] present Lorentzian
results using the metric hierarchy.

While, in the metric setting, we could be content with a result utilising
bounds on the Ricci curvature, since they are known to be weaker than sec-
tional curvature bounds, see [48], in the setting of Lorentzian pre-length
spaces, the hierarchy of Ricci curvature bounds and timelike (sectional)
curvature bounds via triangle comparison is an open question. As such,
in [13, Theorem 4.11], a preliminary Bonnet—Myers result for timelike cur-
vature bounds via triangle comparison is proven; namely, it is shown that
strongly causal, locally causally closed, regular, and geodesic Lorentzian
pre-length spaces with timelike curvature globally bounded below by K < 0
have finite diameter diamg,(X) < —*. Applying Theorem re-frames

v —-—K N
this result in terms of local timelike curvature bounds as follows.

Theorem 4.3 (Synthetic Lorentzian Bonnet—Myers). Let X be a connected,
globally hyperbolic, and regular Lorentzian length space which has a time
function T" and local curvature bounded below by K € R. Assume K < 0.
Assume that X possesses the following non-degeneracy condition: for each
pair of points x < z in X we find y € X such that A(x,y,z2) is a non-
degenerate timelike triangle. Then the diameteﬂ satisfies diam(X) < \/%(

Following |13, Remark 4.12], this result may be viewed as a direct syn-
thetic extension of [9, Theorem 9.5], with an additional non-degeneracy con-
dition. Similarly to the exclusion of spaces isomorphic to R, (0,00), [0, B]
for all B > Lk, or circles of radius greater than ik in the metric setting,

this condition excludes locally one-dimensional spaces from the remit of our
theorem.

' Here we can replace the finite diameter with the diameter, since these notions coincide
on globally hyperbolic Lorentzian length spaces.
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Recall that, throughout this paper, we have assumed triangles satisfy
appropriate size-bounds, such that their comparison triangle is realisable
cf. [4, Lemma 2.1]. In particular, given a Lorentzian pre-length space X
with curvature bounded below (or above) by K, we assume that triangles
A(p,q,r) have 7(p,r) < Dg. The following lemma, which was previously
presented in the context of spacetimes by [9, Proposition 9.4], gives us con-
ditions under which the diameter of a Lorentzian pre-length space is not
attained. Note that the following lemma is formulated via the ordinary di-
ameter instead of the finite diameter, i.e. the supremum of all 7-values in
the space.

Lemma 4.4. Let X be a strongly causal Lorentzian pre-length space. If
diam(X) is finite, then it is not attained on X. Furthermore, if X is a
globally hyperbolic Lorentzian length space, then diam(X) is never attained
on X, independently of whether it is finite.

Proof. Let X be a strongly causal Lorentzian pre-length space. Assume for
contradiction that diam(X) is finite and attained by some p,q € X, that
is, 7(p,q) = diam(X). Then, by strong causality, there exists a point ¢
with ¢ < ¢/, such that 7(p,¢') > 7(p,q) + 7(¢,¢") > 7(p,q) = diam(X),
contradicting the definition of the diameter.

Now assume that X is a globally hyperbolic Lorentzian length space.
Recall that, on such a space, the time separation function is finite. Further-
more, the assumptions of the previous part still hold, hence diam(X) can
never be attained. O

Therefore, all triangles in a globally hyperbolic Lorentzian length space
with curvature bounded below by K < 0 are realisable. Furthermore, all
triangles satisfy size bounds in Lorentzian pre-length spaces which satisfy
the assumptions of either Theorem or |13, Theorem 4.11].

Let us now move on to discussing the Splitting Theorem. Under the
assumption of non-negative curvature, splitting theorems have also been
proven in a variety of settings. In Riemannian geometry, Toponogov showed
that if a complete non-negatively curved manifold contains a line, it splits as
a product with one factor being R [59,/60]. Cheeger and Gromoll generalised
this to the case where the manifold has only non-negative Ricci curvature
[21].

Beem, Ehrlich, Markvorsen and Galloway proved an analogous result
for Lorentzian geometry, where the hypothesis of completeness is replaced
with global hyperbolicity, non-negative curvature need only hold on timelike
planes, and the line must be timelike [10}/11].

In the synthetic setting, Toponogov’s result can be generalised to Alexan-
drov geometry. This was first achieved by Milka, with the stronger assump-
tion that an affine function exists [40], but was later weakened by Burago—
Burago—Ivanov to the presence of a line [17]. In the context of Lorentzian
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length spaces, Beran, Ohanyan, Rott and Solis proved a Splitting Theorem
under the presence of global curvature bounds |14, which we can now restate
with the weaker assumption of local curvature bounds.

Theorem 4.5 (Synthetic Lorentzian Splitting). Let (X,d, <, <,7) be a
connected, globally hyperbolic, regular Lorentzian length space with a proper
metric d, a time function 7', and (local) timelike curvature bounded below by
zero, which satisfies timelike geodesic prolongation and contains a complete
timelike line v : R — X. Then there is a 7- and <-preserving homeomor-
phism f: R x S — X, where S is a proper, strictly intrinsic metric space of
Alexandrov curvature > 0.

Observe that the only additional assumption, cf. |14, Theorem 1.4], made
in order to replace global curvature bounds with local ones in the above is
the presence of a time function, which is necessary in order to apply Theorem
[3.6] Since time functions exist on any second countable, globally hyperbolic,
Lorentzian length space this condition is relatively mild.

4.3 Future work

The assumption in Theorem that the space be a globally hyperbolic
Lorentzian length space is quite a strong one. In the metric setting, the
assumptions are comparatively mild, e.g. [18] and [37] manage to show the
theorem for complete length spaces. The result can even be shown for non-
complete geodesic spaces of curvature bounded below [49]. It is therefore
only natural to ask whether or not the Toponogov Globalisation Theorem
holds in the Lorentzian context under milder assumptions as well. Given
that 18] globalises curvature bounds using a four-point condition, which
was recently adapted to the Lorentzian setting |12, Definition 4.6], we are
optimistic that the answer is positive and a more general result might be
obtained. Such a generalisation would also extend the applicability of the
Bonnet—Myers theorem, for which the assumptions of the Globalisation The-
orem are sufficient but may not all be necessary. In particular, the additional
assumptions under which the Bonnet—Myers theorem holds for global cur-
vature bounds are weaker than the local version, aside from the bounds
themselves.

In the metric case, a powerful consequence of the Toponogov Globali-
sation Theorem is that the Hausdorff dimension of an Alexandrov space is
the same at all neighborhoods in the space [18]. A similar notion of di-
mension has been proposed for Lorentzian length spaces by McCann and
Sémann [39] and it is reasonable to expect that Theorem |3.6[can be used to
make an analogous statement.
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