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Motivation: Turbulence and Vortices

➤ Turbulent flows consist of complex
interactions of vortex structures.

➤ In 2D, they combine as they evolve,
forming stable coherent structures
characterised by circulation/elliptic
motion.

➤ In 3D, one finds knotted/linked tubes
which accumulate at small scale.
“sinews of turbulence.”
[Moffatt et al. 1994]

Vorticity of evolving 2d turbulence
at early time

(Andrey Ovsyannikov - Ecole
Centrale de Lyon)

https://bit.ly/3W8nxyH
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(Contact) Monge–Ampère Equations

➤ Are non-linear second-order PDEs which are quasi-linear w.r.t
second order partial derivatives, up to determinants of the Hessian
or its minors.

➤ In two dimensions, they take the form

Aψxx + 2Bψxy + Cψyy +D
(
ψxxψyy − ψ2

xy

)
+ E = 0 .

where A,B, . . . E can depend on x, y, ψ, ψx, ψy non-linearly.

➤ If A,B, . . . E do not depend on ψ, we have a symplectic
Monge–Ampère (MA) equation.
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Examples of Monge–Ampère Equations

Key linear examples:

➤ Laplace: ∆ψ = 0

➤ Wave: □ψ = 0

From (3D) semi-geostrophic theory:

➤ Ertel: det(Hess(P )) = qg

➤ Chynoweth–Sewell: qg(TxxTyy − (Txy)
2) + Tzz = 0

Here, qg is potential vorticity, P is a (modified) geopotential, and T is
its partial Legendre dual with respect to x and y.

[Chynoweth and Sewell 1989, D’Onofrio et al 2023]
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From Navier–Stokes to Poisson

➤ Homogeneous, incompressible Navier–Stokes equations on Rm

∂v

∂t
= −(v · ∇)v −∇p+ ν∆v (−c) .

➤ Taking the divergence and applying ∇ · v = 0 one finds

∆p = ζijζ
ij − SijS

ij

where ζij =
1
2
(∇jvi −∇ivj) and Sij =

1
2
(∇jvi +∇ivj).

➤ Vorticity term dominates ⇔ ∆p > 0.
Strain term dominates ⇔ ∆p < 0.
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Poisson Equation in Two Dimensions

➤ In 2D, one has a stream function v1 = −ψy and v2 = ψx.

➤ Poisson equation is a MA equation for the stream function

∆p

2
=
(
ψxxψyy − ψ2

xy

)
.

➤ Vorticity dominates ⇔ ∆p > 0 ⇔ Elliptic equation.
Strain dominates ⇔ ∆p < 0 ⇔ Hyperbolic equation.
No dominance ⇔ ∆p = 0 ⇔ Parabolic equation.
[Weiss 1991, Larchevêque 1993]

https://bit.ly/3WphM01
https://bit.ly/3kgLTJk
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Poisson Equation for Pressure

“(This) equation for the pressure is by no means fully understood and
locally holds the key to the formation of vortex structures through the
sign of the Laplacian of the pressure. In this relation... may lie a deeper
knowledge of the geometry of both the Euler and Navier–Stokes
equations.” [Gibbon 2008]

https://bit.ly/3H5Dfqo
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Configuration and Phase Spaces

➤ Manifold M – looks locally like Rm but globally may have more
structure i.e. Sm or Tm.

➤ Configuration space/Background – m-dimensional manifold M with

(local) coordinates x1, x2, · · ·xm w.r.t some basis {ei}mi=1, with
points x representing positions.

➤ A particle at a point x ∈M has an m-dimensional vector space of
possible momenta with coordinates q1, q2 · · · qm in some basis
{ẽi}mi=1.

➤ Phase space T ∗M – 2m-dimensional manifold, with (local)
coordinates x1 · · ·xm , q1 · · · qm, representing all possible
combinations of positions and momenta.
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Phase Space as the Cotangent Bundle

➤ Tangent space TxM – Vector space of all tangent vectors to a
point x ∈M . Has a basis ∂x1 , · · · ∂xm .

➤ Cotangent space T ∗
xM – Dual vector space to TxM . Has a basis

dx1 · · · dxm, satisfying dxi(∂xj) = δij (act on vector fields at x).

➤ Cotangent bundle T ∗M – The 2m-dimensional manifold consisting
of (disjoint union of) M and its cotangent spaces.

➤ Differential 1-Form on M – C∞(M) linear combination of dxi and
elements of T ∗M i.e. α = αi(x

1, · · ·xm) dxi ∈ T ∗M := Ω1(M)
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Wedge Product

➤ Wedge Product ∧ – A skew-symmetric bilinear operator on forms,
so α ∧ β = −β ∧ α for 1-forms α, β.

➤ The wedge product of two 1-forms on M defines a 2-form i.e.
αidx

i ∧ βjdxj = (αiβj)dx
i ∧ dxj ∈ Ω2(M).

➤ The wedge product of k differential 1-forms is a k-form. More
generally, a k-form is a totally skew-symmetric k-linear operator on
vector fields: γ = γi1,···ikdx

i1 ∧ dxi2 ∧ · · · ∧ dxik

➤ The wedge product of a k-form α̃ with an ℓ-form β̃ is a
(k + ℓ)-form satisfying: α̃ ∧ β̃ = (−1)kℓβ̃ ∧ α̃.
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Exterior Derivative

➤ Exterior Derivative – Operator d : Ωk(M) → Ωk+1(M) taking
k-forms to (k + 1)-forms.

➤ Exterior derivative of a function:
d(f) = (∂if)dx

i (think total derivative).

➤ Exterior derivative of a 1-form:
d(αidx

i) = (dαi)∧dxi = (∂jαi)dx
j∧dxi = 1

2
(∂jαi−∂iαj)dx

j∧dxi.

➤ Note: d2 = 0 i.e.

d2(f) = d(∂ifdx
i) = d(∂if) ∧ dxi

= (∂j∂if)dx
j ∧ dxi = 0
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3. Monge–Ampère Geometry and 2D

Navier–Stokes Flows
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Monge–Ampère Structures

A Monge–Ampère structure [Banos 2002] is a pair (ω, α) of differential
forms on T ∗Rm, where:

ω ∈ Ω2(T ∗Rm) is a symplectic differential 2-form

➤ ω is anti-symmetric and bilinear

➤ ω is closed, i.e. dω ≡ 0

➤ ω is non-degenerate, i.e. ω(X, ·) ≡ 0 iff the vector-field X ≡ 0.

The canonical choice is

ω = dqi ∧ dxi =

(
0m −Im
Im 0m

)

https://bit.ly/3GDxiQ0
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Monge–Ampère Structures

A Monge–Ampère structure [Banos 2002] is a pair (ω, α) of differential
forms on T ∗Rm, where:

ω ∈ Ω2(T ∗Rm) is a symplectic differential 2-form

➤ ω is anti-symmetric and bilinear

➤ ω is closed, i.e. dω ≡ 0

➤ ω is non-degenerate, i.e. ω(X, ·) ≡ 0 iff the vector-field X ≡ 0.

α ∈ Ωm(T ∗Rm) is an ω-effective differential m-form

➤ α and ω are skew-orthogonal, i.e. α ∧ ω = 0,

➤ α is called the MA form.

https://bit.ly/3GDxiQ0
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Recovering Equations and Solutions

➤ Consider m-dimensional submanifolds
L = {x1, · · ·xm, ∂1ψ · · · ∂mψ} := dψ
in T ∗Rm for ψ ∈ C∞(Rm).

➤ Impose the pull-back (restriction) of ω and α
to L vanish, i.e.

ω|L = (dqi ∧ dxi)|L
= d(∂iψ) ∧ dxi = (∂j∂iψ)dx

j ∧ dxi = 0

➤ The condition α|L = 0 then gives our MA
equation, with classical solutions ψ.
[Lychagin 1979]
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Monge–Ampère Equations in Two Dimensions

The ω-effective MA forms for 2D background (m = 2) are

α = A dq1 ∧ dx2 +B (dx1 ∧ dq1 + dq2 ∧ dx2)

+ C dx1 ∧ dq2 +D dq1 ∧ dq2 + E dx1 ∧ dx2 .

Imposing that their pull-back to L = {x1, x2, ∂1ψ, ∂2ψ} vanish yields
(x1 = x, x2 = y)

Aψxx + 2Bψxy + Cψyy +D
(
ψxxψyy − ψ2

xy

)
+ E = 0 ,

This correspondence is a bijection (unique MA form in ω-effective class).
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Monge–Ampère Equations in Two Dimensions

➤ Recall canonical symplectic form has ω|L = 0.

➤ Hence (α+ ω)|L = α|L + ω|L = α|L, so α and α+ ω give the same
MA equation.

➤ As ω is non-degenerate, ω ∧ ω ̸= 0, but recall α ∧ ω = 0 by
effectiveness.

➤ Hence (α+ω)∧ω = α∧ω+ω∧ω ̸= 0, so (α+ω) not ω-effective.
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Monge–Ampère Equations in Two Dimensions

➤ Pfaffian f is defined by α ∧ α =: fω ∧ ω.

➤ In fact, f = AC −B2 −DE which, on L, is the determinant of the
linearisation matrix for our PDE.

➤ Hence, the MA equation α|L = 0 is

elliptic ⇔ f > 0.
hyperbolic ⇔ f < 0.
parabolic ⇔ f = 0.
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The Lychagin–Rubtsov Theorem and Equivalence

➤ Define a J : X(T ∗R2) → X(T ∗R2) by

1√
|f |
α(· , ·) =: ω(J · , ·)

(
J =

1√
|f |
ω−1α as matrices

)
,

for which f ≶ 0 ⇔ J2 = ±1. [Lychagin et al. 1993]

➤ The Lychagin–Rubtsov theorem states t.f.a.e:

☞ d( 1√
|f |
α) = 0.

☞ α|L = 0 is locally equivalent to ∆ψ = 0 or □ψ = 0.
☞ J is integrable.

https://bit.ly/3CLVqPk
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Geometry of the 2D Poisson Equation

One can recover the pressure equation

∆p

2
=
(
ψxxψyy − ψ2

xy

)
,

by choosing the MA form [Roulstone et al. 2009]

α = dq1 ∧ dq2 −
∆p

2
dx1 ∧ dx2

=


0 −∆p

2
0 0

∆p
2

0 0 0

0 0 0 1

0 0 −1 0



https://bit.ly/3CLFk8j
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Geometry of the 2D Poisson Equation

➤ The Pfaffian is then f = ∆p
2
.

➤ Geometric justification for Poisson equation being

elliptic ⇔ ∆p > 0.
hyperbolic ⇔ ∆p < 0.
parabolic ⇔ ∆p = 0.

➤ Also, the Poisson equation for pressure is locally equivalent to
∆ψ = 0 or □ψ = 0 if and only if ∆p is constant.
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Extension to Riemannian Manifold

➤ On a Riemannian manifold (M, g), the
approach is broadly the same:

∆p+Rijv
ivj = ζijζ

ij − SijS
ij .

➤ Schematically take
dqi → dqi − dxjΓij

kqk.
I → g.
f = 1

2
∆p→ f = 1

2
(∆p+Rijqiqj).

➤ Geometric justification for Weiss criterion
for equation type still applies on a manifold,
e.g. S2.

Navier–Stokes equations in
spherical geometry describe
ocean/atmosphere dynamics

(Joshua Stevens - NASA Earth
Observatory)
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Velocity and Divergence

➤ Rather than working with the stream function, consider working
with velocity directly. Set L̃ = {x1, x2, v1(x), v2(x)}.

➤ α|L̃ = 0 gives the Poisson equation for pressure in terms of vorticity
and strain, but ω|L̃ = 0 now implies the vorticity vanishes.

➤ Use a different symplectic form

ϖ = dq1 ∧ dx2 − dq2 ∧ dx1

whose pullback to L̃ is equivalent to ∇ · v = 0.

➤ In higher dimensions, the divergence-free and Poission equations
form a Jacobi system with solution v(x), which can be studied
using higher-symplectic geometry in this way. [Cantrijn et al. 2009]

https://bit.ly/3H5xSHt
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4. The Lychagin–Rubtsov Metric and its Pullback
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Lychagin–Rubtsov Metric

➤ For a choice of (non-degenerate, effective) 2-form K ∈ Ω2(T ∗R2),
can define a symmetric, bilinear form

g(· , ·) := −K(J · , ·) (g := −KJ as matrices) ,

called the Lychagin–Rubtsov (LR) metric, [Roulstone et al. 2001].

➤ There exists a choice of K s.t. the metric in dxi, dqi basis is

g =

(
fI 0

0 I

)
with signature dictated by the sign of f .

https://bit.ly/3Xs1lkq


Imperial College London
Junior Analysis Seminar

Lewis Napper

1. Monge–Ampère
Equations in Fluid
Dynamics

2. Differential
Geometry: An Overview

3. Monge–Ampère
Geometry and 2D
Navier–Stokes Flows

4. The
Lychagin–Rubtsov
Metric and its Pullback

5. Conclusion and
Outlook

Lychagin–Rubtsov Metric for the Poisson Equation

The LR metric on T ∗R2 given by

g =

(∆p
2
I 0

0 I

)
is

Riemannian ⇔ ∆p > 0.
Kleinian ⇔ ∆p < 0.

Degenerate ⇔ ∆p = 0.

N.B. These degeneracies correspond to singularities of the scalar
curvature — they persist under coordinate changes.
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Pull-back Metric for the Poisson Equation

➤ The pull-back of the LR metric to L = dψ is

g|L = ζ

(
ψxx ψxy

ψxy ψyy

)
where ζ = ∆ψ is vorticity.

➤ Degenerate when ζ = 0 or ∆p = 0.
Riemannian when ∆p > 0.
Kleinian when ∆p < 0.

➤ Degeneracy when ζ = 0 not always curvature singularity.
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Geometry of the 2D Poisson Equation

∆p > 0 < 0 = 0

Dominance Vorticity Strain None

α|L = 0 Elliptic Hyperbolic Parabolic

f > 0 < 0 = 0

J2 −1 1 Singular

g Riemannian (4, 0) Kleinian (2, 2) Degenerate

g|L Riemannian (2, 0) Kleinian (1, 1)* Degenerate

*Except when ζ = 0, in which case it is degenerate
(Agrees with Larchevêque that sign of ζ is constant when ∆p > 0).
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5. Conclusion and Outlook
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Summary

➤ We introduced MA structures and their associated geometry as a
tool for studying MA PDEs.

➤ We applied this tool to the pressure equation in 2D and showed that
the signatures of the LR metric and its pull-back act as diagnostics
for equation type and the dominance of vorticity and strain.

➤ We briefly discussed generalisations to higher dimensions and
manifolds with curvature, providing geometric validation for the
Weiss criterion in these cases.
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Outlook: Topology of Vortices

➤ For simply connected regions V of 2D flows on which ∆p > 0 and
with boundary given by a closed stream-line, all streamlines within
V are also closed (and convex). [Larchevêque 1993]

➤ Gauss–Bonnet Theorem relates the mean curvature of the boundary
of the ‘vortex’ to its topology, and the gradients of vorticity and
strain encoded by the curvature of g|L.

➤ No Gauss–Bonnet in 3D, but can relate K to the helicity and hence
to the topology of knots (Jones’ polynomial, Gauss linking number,
etc) [Liu and Ricca 2012, Ricca and Moffatt 1992].
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Outlook: Generalised Solutions

Generalised solution to a MA equation w.r.t. structure (ω, α) is any
(Lagrangian) submanifold L ↪→ T ∗Rm s.t.
dim(L) = m, ω|L = 0, and α|L = 0.

Can study discontinuity/lower regularity using multi-valued functions
ψ(x) [Vinogradov 1973, Kushner et al. 2007]

https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=37624&option_lang=eng
https://bit.ly/3QF6nb0


Imperial College London
Junior Analysis Seminar

Lewis Napper

1. Monge–Ampère
Equations in Fluid
Dynamics

2. Differential
Geometry: An Overview

3. Monge–Ampère
Geometry and 2D
Navier–Stokes Flows

4. The
Lychagin–Rubtsov
Metric and its Pullback

5. Conclusion and
Outlook

Outlook: Generalised Solutions

➤ What additional fluid behaviour is observed when allowing
non-bijective projection into Rm?

➤ In semi-geostrophic theory, these produce degeneracy of g|L and
type change. Represents shockwaves in meteorological context.
[D’Onofrio et al. 2023]

➤ Our geometry in 3D produces vortex tubes and lines for classical
solutions — expect vortex sheets to be related to the singular locus
of projections.

https://arxiv.org/abs/2209.13337
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Thank you!

Any questions?
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