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Types of Fluid Flow

Laminar Flow in a Sink
(Lucas Pereira - University of Stanford)

Wake Turbulence
(Ryoh Ishihara - via University of Illinois)
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The Importance of Vortices

➤ Turbulent flows consist of complex
interactions of vortex structures.

➤ In 2D, they combine as they evolve,
forming stable coherent structures
characterised by circulation/elliptic
motion.

➤ In 3D, one finds knotted/linked tubes
which accumulate at small scale.
“sinews of turbulence.”
[Moffatt et al. 1994]

Vorticity of evolving 2d
turbulence at early time

(Andrey Ovsyannikov - Ecole
Centrale de Lyon)

https://bit.ly/3W8nxyH
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(Contact) Monge–Ampère Equations

➤ Are non-linear second-order PDEs which are linear w.r.t second
order partial derivatives, up to a Hessian determinant.

➤ In two dimensions, they take the form

Aψxx + 2Bψxy + Cψyy +D
(
ψxxψyy − ψ2

xy

)
+ E = 0 .

where A,B, . . . E can depend on x, y, ψ, ψx, ψy non-linearly.

➤ If A,B, . . . E do not depend on ψ, we have a symplectic
Monge–Ampère (MA) equation.
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Monge–Ampère Structures and Solutions

➤ The triple (T ∗Rm, ω, α) with

☞ ω ∈ Ω2(T ∗Rm) symplectic, e.g. ω = dqi ∧ dxi,
☞ α ∈ Ωm(T ∗Rm) is ω-effective, i.e. α ∧ ω = 0,

is called a Monge–Ampère structure. [Banos 2002]

➤ A generalised solution to a MA equation, w.r.t. a MA structure,
is a submanifold ι : L ↪→ T ∗Rm s.t.

☞ L is Lagrangian, i.e. dim(L) = m and ι∗ω = 0.
☞ α vanishes on L, i.e. ι∗α = 0.

[Kushner et al. 2007]

https://bit.ly/3GDxiQ0
https://bit.ly/3QF6nb0
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Recovering PDEs and Classical Solutions

➤ Consider L with coordinates (xi, ∂iψ)
for some ψ ∈ C ∞(Rm).

➤ This is Lagrangian, trivially satisfying
ι∗ω = (dψ)∗ω = 0.

➤ The constraint ι∗α = (dψ)∗α = 0 is the
corresponding MA equation, with
classical solution ψ. [Lychagin 1979]

➤ The projection π : L→ Rm is a
diffeomorphism.

https://bit.ly/3kgbhz6
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More on Generalised Solutions

Pathologies of a generalised solution L:

➤ When π : L→ Rm is not surjective
(ψ is not defined on the whole domain).

➤ When π : L→ Rm is not injective
(ψ is a multivalued solution).
[Vinogradov 1973]

➤ When π : L→ Rm is not immersive —
Arnold’s Singularities.

https://bit.ly/3MWzqXN
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Monge–Ampère Equations in Two Dimensions

The general MA equation in two dimensions

Aψxx + 2Bψxy + Cψyy +D
(
ψxxψyy − ψ2

xy

)
+ E = 0

is (uniquely) given by the pull-back of the ω-effective MA form

α = A dq1 ∧ dx2 +B (dx1 ∧ dq1 + dq2 ∧ dx2)

+ C dx1 ∧ dq2 +D dq1 ∧ dq2 + E dx1 ∧ dx2

to L = dψ.
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Monge–Ampère Equations in Two Dimensions

➤ The Pfaffian is defined by α ∧ α =: fω ∧ ω
where f = AC −B2 −DE is the determinant of the
linearisation matrix for our PDE.

➤ Hence, the MA equation ι∗α = 0 is

elliptic ⇔ f > 0.
hyperbolic ⇔ f < 0.
parabolic ⇔ f = 0.
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The Lychagin–Rubtsov Theorem and Equivalence

➤ One can define an almost (para-)complex structure on T ∗R2

α√
|f |

=: J ¬ ω ,

for which f ≶ 0 ⇔ J2 = ±1. [Lychagin et al. 1993]

➤ The Lychagin–Rubtsov theorem states t.f.a.e:

☞ d(J ¬ ω) = 0.
☞ (dψ)∗α = 0 is locally equivalent to ∆ψ = 0 or □ψ = 0.
☞ J is integrable.

https://bit.ly/3CLVqPk
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The Lychagin–Rubtsov Metric

➤ Choosing K ∈ Ω2(T ∗R2), we can define a symmetric, bilinear
form ĝ(X, Y ) = K(X, JY ) — Lychagin–Rubtsov (LR) metric.
[Roulstone et al. 2001]

➤ There exists a choice of K s.t. the metric in (xi, qi) coordinates
is

ĝ =

(
fI 0

0 I

)
with signature dictated by the sign of f .

https://bit.ly/3Xs1lkq
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Interlude

➤ MA equations are second-order PDEs whose second-order
nonlinearity is a Hessian determinant.

➤ Encoded by a symplectic form ω and an ω-effective form α.

➤ Solutions are given by submanifolds of T ∗Rm which are isotropic
w.r.t. ω and α.

➤ Type of a 2D MA equation is indicated by the Pfaffian f .

➤ There exists an almost (para-)Hermitian structure (J,K, ĝ) on
T ∗Rm, where f ̸= 0.
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Pressure, Vorticity, and Strain

➤ Navier–Stokes equations on Rm with coordinates xi are

∂vi

∂t
= −vj∇jv

i −∇ip+ ν∆vi .

➤ Applying the incompressibility constraint ∇ · v = 0 one finds

∆p = ζijζ
ij − SijS

ij with ζij = ∇[jvi] and Sij = ∇(ivj) .

➤ Vorticity term dominates ⇔ ∆p > 0.
Strain term dominates ⇔ ∆p < 0.
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The Pressure Equation

(This) equation for the pressure is by no means fully understood and
locally holds the key to the formation of vortex structures through the
sign of the Laplacian of the pressure. In this relation... may lie a
deeper knowledge of the geometry of both the Euler and
Navier–Stokes equations.” [Gibbon 2008]

https://bit.ly/3H5Dfqo
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Pressure Equation in Two Dimensions

➤ In 2D, one has a stream function v1 = −ψy and v2 = ψx.

➤ Pressure equation is a MA equation for the stream function

∆p

2
=

(
ψxxψyy − ψ2

xy

)
.

➤ Vorticity dominates ⇔ ∆p > 0 ⇔ Elliptic equation.
Strain dominates ⇔ ∆p < 0 ⇔ Hyperbolic equation.
No dominance ⇔ ∆p = 0 ⇔ Parabolic equation.
[Weiss 1991, Larchevêque 1993]

https://bit.ly/3WphM01
https://bit.ly/3kgLTJk
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Geometry of the 2D Poisson Equation

One can recover the pressure equation

∆p

2
=

(
ψxxψyy − ψ2

xy

)
by choosing the MA form [Roulstone et al. 2009]

α = dq1 ∧ dq2 − fdx1 ∧ dx2 ,

with Pfaffian given by

f =
∆p(x, y)

2
.

https://bit.ly/3CLFk8j
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Almost (para-)Complex Structure

Recall that when ∆p =: 2f ̸= 0, we have an almost (para-)complex
structure J defined via

α√
|f |

=: J ¬ ω ,

By Lychagin–Rubtsov Theorem, it follows

∆p

2
= (ψxxψyy − ψ2

xy)

is locally equivalent to ∆ψ = 0 or □ψ = 0 if and only if ∆p is
constant.
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Associated Metrics

The LR metric on T ∗R2 given by

ĝ =

(∆p
2
I 0

0 I

)
is

Riemannian ⇔ ∆p > 0.
Kleinian ⇔ ∆p < 0.

Degenerate ⇔ ∆p = 0.

N.B. These degeneracies correspond to singularities of the scalar
curvature — they persist under coordinate changes.
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Associated Metrics

➤ The pullback metric on (ι, L) given by a classical solution dψ is

(dψ)∗ĝ = ζ

(
ψxx ψxy

ψxy ψyy

)
where ζ = ∆ψ.

➤ Degenerate when ζ = 0 or ∆p = 0.
Riemannian when ∆p > 0.
Kleinian when ∆p < 0.

➤ Degeneracy when ζ = 0 not always curvature singularity.
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Geometry of the 2D Poisson Equation

∆p > 0 < 0 = 0

Dominance Vorticity Strain None

(dψ)∗α = 0 Elliptic Hyperbolic Parabolic

f > 0 < 0 = 0

J2 −1 1 Singular

ĝ Riemannian (4, 0) Kleinian (2, 2) Degenerate

(dψ)∗ĝ Riemannian (2, 0) Kleinian (1, 1)* Degenerate

*Except when ζ = 0, in which case it is degenerate.
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A Key Observation in 2D

➤ The divergence-free constraint ∇ · v = 0 is encoded by the
vanishing of the pull-back of

ϖ = dqi ∧ ⋆ dxi

= dq1 ∧ dx2 − dq2 ∧ dx1

to submanifolds L with coordinates (xi, vi(x)).

➤ ϖ is a symplectic form, so could be used in place of ω.

➤ Superficial change in 2D, upon noting v = ⋆dψ,
but crucial in higher dimensions when the pressure equation is
not MA (there is no stream function).
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Higher Symplectic Monge–Ampère Problems

➤ Closed and non-degenerate ϖ ∈ Ωk+1(T ∗Rm) are called k-plectic
forms. [Cantrijn et al. 2009]

➤ Consider structures of form (T ∗Rm, ϖ, α) where ϖ is
(m− 1)-plectic.

➤ Generalised solutions are submanifolds ι : L ↪→ T ∗Rm satisfying
ι∗ϖ = 0 and ι∗α = 0.

➤ We focus on L with coordinates (xi, vi(x)), diffeomorphic to Rm,
in lieu of classical solutions.

https://bit.ly/3H5xSHt
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Pressure Equation in m-Dimensions

➤ Pulling back the following structure to classical solutions gives
the divergence-free and pressure equations (2f = ∆p):

ϖ = dqi ∧ ⋆ dxi

α = 1
2
dqi ∧ dqj ∧ ⋆ (dxi ∧ dxj)− f volm

➤ Such higher-symplectic MA structures seem to encode coupled
vector equations.

➤ For flows with symmetry, we now have access to k-plectic
reduction to simplify say, 3D problems to 2D ones.
[Blacker 2021]

https://bit.ly/3XdfXnM
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Associated Metrics

➤ Can again define a metric on T ∗Rm of the following form

ĝ =

(
fIm 0

0 Im

)
.

➤ For Aij = ∇jvi, the pullback metric is

(ι∗ĝ)ij = Ak
iAkj − 1

2
δijAklA

lk .

➤ In general, signature change of ι∗ĝ does not coincide with sign
change in f — more complicated relationship.
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Extension to Riemannian Manifold

➤ On a Riemannian manifold (M, g), the
approach is broadly the same:

∆p+Rijv
ivj = ζijζ

ij − SijS
ij .

➤ Schematically take
dqi → dqi − dxjΓij

kqk.
I → g.
f = 1

2
∆p→ f = 1

2
(∆p+Rijqiqj).

➤ Geometric justification for Weiss criterion
for equation type still applies on a
manifold, e.g. S2.

Navier–Stokes equations in
spherical geometry describe
ocean/atmosphere dynamics
(Joshua Stevens - NASA

Earth Observatory)
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Summary

➤ We introduced MA structures and their associated geometry as
a tool for studying MA PDEs.

➤ We applied this tool to the pressure equation in 2D and showed
that the signatures of the LR metric and its pull-back act as
diagnostics for equation type and the dominance of vorticity and
strain.

➤ We briefly discussed generalisations to higher dimensions and
manifolds with curvature, providing geometric validation for the
Weiss criterion in these cases.
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Outlook

➤ What additional behaviour is observed when allowing
non-immersive projections?

➤ In semi-geostrophic theory, these produce degeneracy of ι∗ĝ and
type change. [D’Onofrio et al. 2023]

➤ Geometry of classical solutions is related to elliptic vortices,
tubes, and lines — expect vortex sheets to be related to the
singular locus of projections.

https://arxiv.org/abs/2209.13337
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Outlook

➤ One can classify 2D and 3D MA equations as locally equivalent
to Laplace/ Wave type equations. [Banos 2003]

➤ Can extended generalised geometry provide a similar
classification for higher-symplectic equations/ Jacobi systems?
[Banos 2007]

➤ Our LR metric is closely related to the scaled Sasakian metrics,
whose associated structures have been studied in detail.
[Gezer et al. 2014]

https://bit.ly/3w8ghsh
https://bit.ly/3ZH0heu
https://bit.ly/40w3pKh
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Thank you!

Any questions?
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