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The Importance of Vortices

➤ Turbulent flows consist of complex
interactions of vortex structures.

➤ In 2D, they combine as they evolve,
forming stable coherent structures
characterised by circulation/elliptic
motion.

➤ In 3D, one finds knotted/linked tubes
which accumulate at small scale.
“sinews of turbulence.”
[Moffatt et al. 1994]

Vorticity of evolving 2d
turbulence at early time

(Andrey Ovsyannikov - Ecole
Centrale de Lyon)

https://bit.ly/3W8nxyH
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Pressure, Vorticity, and Strain

➤ Navier–Stokes equations on Rm with coordinates xi are

∂vi

∂t
= −vj∇jv

i −∇ip+ ν∆vi .

➤ Applying the incompressibility constraint ∇ · v = 0 one finds

∆p = ζijζ
ij − SijS

ij with ζij = ∇[jvi] and Sij = ∇(ivj) .

➤ Vorticity term dominates ⇔ ∆p > 0.
Strain term dominates ⇔ ∆p < 0.
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The Pressure Equation

“(This) equation for the pressure is by no means fully understood and
locally holds the key to the formation of vortex structures through the
sign of the Laplacian of the pressure. In this relation... may lie a
deeper knowledge of the geometry of both the Euler and
Navier–Stokes equations.” [Gibbon 2008]

https://bit.ly/3H5Dfqo
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Pressure Equation in Two Dimensions

➤ In 2d, one has a stream function v1 = −ψy and v2 = ψx.

➤ Pressure equation is a Monge–Ampère equation for the stream
function [Larchevêque 1993]

∆p

2
=

(
ψxxψyy − ψ2

xy

)
.

➤ Vorticity dominates ⇔ ∆p > 0 ⇔ Elliptic equation.
Strain dominates ⇔ ∆p < 0 ⇔ Hyperbolic equation.
No dominance ⇔ ∆p = 0 ⇔ Parabolic equation.
[Weiss 1991]

https://bit.ly/3kgLTJk
https://bit.ly/3WphM01
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Taylor–Green Vortex

ψ(x, y) = −cos(x)cos(y)

= −ζ(x, y)
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Monge–Ampère Equations

➤ Are non-linear second-order PDEs which are linear w.r.t second
order partial derivatives, up to a Hessian determinant.

➤ In two dimensions, they take the form

Aψxx + 2Bψxy + Cψyy +D
(
ψxxψyy − ψ2

xy

)
+ E = 0 .

➤ Can recast them in terms of differential forms on phase space —
Monge–Ampère (MA) structures.
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Monge–Ampère Structures and Solutions

➤ Monge–Ampère structures are (T ∗Rm, ω, α) with

☞ ω ∈ Ω2(T ∗Rm) symplectic, i.e. ω = dqi ∧ dxi.
☞ α ∈ Ωm(T ∗Rm) satisfying α ∧ ω = 0.

[Banos 2002]

➤ A submanifold ι : L ↪→ T ∗Rm is a generalised solution to a MA
equation, w.r.t. a MA structure, if

☞ L is Lagrangian, i.e. dim(L) = m and ι∗ω = 0.
☞ α vanishes on L, i.e. ι∗α = 0.

[Kushner et al. 2007]

https://bit.ly/3GDxiQ0
https://bit.ly/3QF6nb0
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Recovering Classical Solutions

If L has coordinates (xi, ∂iψ), then ι
∗α = (dψ)∗α = 0 is the

corresponding MA equation, with ψ ∈ C∞(Rm) a classical solution.
[Lychagin 1979]

https://bit.ly/3kgbhz6
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Monge–Ampère Equations in Two Dimensions

➤ The general MA equation in two dimensions is given by the
effective MA form

α = A dq1 ∧ dx2 +B (dx1 ∧ dq1 + dq2 ∧ dx2)

+ C dx1 ∧ dq2 +D dq1 ∧ dq2 + E dx1 ∧ dx2

➤ Pfaffian α ∧ α =: fω ∧ ω is given by f = AC −B2 −DE.

➤ The Monge–Ampère equation ι∗α = 0 is

elliptic ⇔ f > 0.
hyperbolic ⇔ f < 0.
parabolic ⇔ f = 0.
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Monge–Ampère Equations in Two Dimensions

➤ One can define an almost (para-)complex structure on T ∗R2

α√
|f |

=: J ¬ ω ,

for which f ≶ 0 ⇔ J2 = ±1. [Lychagin et al. 1993]

➤ The Lychagin–Rubtsov theorem states t.f.a.e:

☞ d(J ¬ ω) = 0.
☞ (dψ)∗α = 0 is locally equivalent to ∆ψ = 0 or □ψ = 0.
☞ J is integrable.

https://bit.ly/3CLVqPk
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Almost (para-)Hermitian Metric

➤ Choosing K ∈ Ω2(T ∗R2), we can define a symmetric, bilinear
form ĝ(X, Y ) = K(X, JY ) — Lychagin–Rubtsov (LR) metric.

➤ Earlier works first fix ĝ in terms of (ω, α), corresponding to one
choice of K. [Roulstone et al. 2001]

➤ We instead make a choice of K, s.t. the metric in (xi, qi)
coordinates is

ĝ =

(
fI 0

0 I

)
with signature dictated by the sign of f .

https://bit.ly/3Xs1lkq
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Geometry of the 2D Poisson Equation

One can recover the pressure equation

∆p

2
=

(
ψxxψyy − ψ2

xy

)
by choosing the MA form [Roulstone et al. 2009]

α = dq1 ∧ dq2 − fdx1 ∧ dx2 ,

with Pfaffian given by

f =
∆p(x, y)

2
.

https://bit.ly/3CLFk8j
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Geometry of the 2D Poisson Equation

The LR metric given by

ĝ =

(∆p
2
I 0

0 I

)
is

Riemannian ⇔ ∆p > 0.
Kleinian ⇔ ∆p < 0.

Degenerate ⇔ ∆p = 0.

N.B. These degeneracies correspond to singularities of the scalar
curvature — they persist under coordinate changes.
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Geometry of the 2D Poisson Equation

➤ The pullback metric on (ι, L) given by a classical solution dψ is

(dψ)∗ĝ = ζ

(
ψxx ψxy

ψxy ψyy

)
where ζ = ∆ψ.

➤ Degenerate when ζ = 0 or ∆p = 0.
Riemannian when ∆p > 0.
Kleinian when ∆p < 0.

➤ Degeneracy when ζ = 0 not always curvature singularity.
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Geometry of the 2D Poisson Equation

∆p > 0 < 0 = 0

Dominance Vorticity Strain None

(dψ)∗α = 0 Elliptic Hyperbolic Parabolic

f > 0 < 0 = 0

J2 −1 1 Singular

ĝ Riemannian (4, 0) Kleinian (2, 2) Degenerate

(dψ)∗ĝ Riemannian (2, 0) Kleinian (1, 1)* Degenerate

*Except when ζ = 0, in which case it is degenerate.
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Interlude

Key questions:

➤ Pressure equation in 3D is not Monge–Ampère, but is similar.
What is the correct framework for studying such equations?

➤ Can we reduce higher dimensional problems with symmetry to
simpler 2D problems?

➤ Given that we are now in a geometric framework, do any
additional features emerge from studying the Navier–Stokes
equations on a Riemannian Manifold?
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A 2D Observation

➤ The above discussion also works with the symplectic form
ϖ = dqi ∧ ⋆ dxi.

➤ The pressure equation is given by ι∗α = 0 when a solution (ι, L)
has coordinates (xi, vi(x)).

➤ As a bonus, this choice encodes incompressibility:

ι∗ϖ = ∇ivi = 0 .

➤ The MA equation for pressure is recovered by noting v = ⋆ dψ.
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Higher Symplectic Monge–Ampère Problems

➤ Closed and non-degenerate ϖ ∈ Ωk+1(T ∗Rm) are called k-plectic
forms. [Cantrijn et al. 2009]

➤ Consider structures of form (T ∗Rm, ϖ, α) for where ϖ is now
(m− 1)-plectic.

➤ We shall call submanifolds ι : L ↪→ T ∗Rm generalised solutions if
ι∗ϖ = 0 and ι∗α = 0.

➤ We focus on (ι, L) with coordinates (xi, vi(x)), such that
dim(L) = m, in lieu of classical solutions.

https://bit.ly/3H5xSHt
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Geometry of Higher Dimensional Flows

➤ For ϖ ∈ Ωm(T ∗Rm), one makes the choice

ϖ = dqi ∧ ⋆ dxi .

Pulling this back to L with coordinates (xi, vi) gives
incompressibility.

➤ For α ∈ Ωm(T ∗Rm), one makes the choice [Roulstone et al. 2009]

α = 1
2
dqi ∧ dqj ∧ ⋆(dxi ∧ dxj)− f volm

for 2f = ∆p, which pulls back to the pressure equation.

https://bit.ly/3GGSyUK
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Geometry of Higher Dimensional Flows

➤ Our structure appears to encode coupled (vector) equations.

➤ Can again define the LR metric on T ∗Rm in terms of an
endomorphism J [Banos 2002, Hitchin 2000]

ĝ =

(
fIm 0

0 Im

)
.

➤ For Aij = ∇jvi, the pullback metric is

(ι∗ĝ)ij = Ak
iAkj − 1

2
δijAklA

lk .

https://bit.ly/3W518lT
https://bit.ly/3ki0p3y
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Three Dimensional Flows With Symmetry

➤ The class of 2.5D flows take the form [Ohkitani et al. 2000]:

(ẋ, ẏ, ż) := (v1(x, y, t), v2(x, y, t), zγ(x, y, t) +W (x, y, t)) .

➤ For Burgers’ vortex W ≡ 0, γ = γ(t), one can symplectically
reduce to a flow in 2d satisfying modified
pressure/compressibility equations. [Banos et al. 2016]

➤ One may perform a reduction when γ ≡ 0 or W (x, y) = cγ(x, y),
as there is a 1D symmetry.

https://bit.ly/3CNL3ua
https://bit.ly/3Wa1YxR
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Three Dimensional Flows With Symmetry

➤ Standard symplectic reduction yields equations for vi and an LR
metric on the reduced space ∼= T ∗R2.

➤ Also have access to higher symplectic reduction, which yields
equations in terms of v3 and a stream function ψ. [Blacker 2021]

➤ The case γ ≡ 0 can also be extended to background manifolds
with metric

g = g2 + e−2φdx3 ⊗ dx3

i.e. cylindrical or spherical domains.

https://bit.ly/3XdfXnM
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Extension to Riemannian Manifold

➤ On a Riemannian manifold (M, g), the
approach is broadly the same,

∆p+Rijv
ivj = ζijζ

ij − SijS
ij .

➤ Schematically take
dqi → dqi − dxjΓij

kqk.
Im → g.
f = 1

2
∆p→ f = 1

2
(∆p+Rijqiqj).

Navier–Stokes equations in
spherical geometry describe
ocean/atmosphere dynamics
(Joshua Stevens - NASA

Earth Observatory)
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Outlook

➤ Can the different late-time behaviour of vortices in 2D and 3D
be related to the topology of solutions (ι, L)? i.e. via Maslov
class?

➤ What additional behaviour is observed when allowing
non-immersive projections? Related to degeneracy of ι∗ĝ and
flow type change in semi-geostrophic theory.
[D’Onofrio et al. 2023]

➤ For us, ι∗ĝ may degenerate due to coordinate choice.
Instead, classifying curvature singularities may tell us more
about type change and vortex formation.

https://arxiv.org/abs/2209.13337
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➤ For us, ι∗ĝ may degenerate due to coordinate choice.
Instead, classifying curvature singularities may tell us more
about type change and vortex formation.

https://arxiv.org/abs/2209.13337


Mathematical
Physics Seminar

Lewis Napper

1. Vortices and
Incompressible
Fluids

2. Monge–Ampère
Structures

3. Geometry of
Fluid Flows in 2D

4. Fluid Flows in
Higher Dimensions

5. Additional
Results

6. Outlook

Outlook

➤ Classify 2D MA equations with integrable J as locally
equivalent to Laplace/wave equation.

➤ Can be extended to 3D MA equations under the added
condition that ĝ is flat. [Banos 2003]

➤ Wish to classify higher symplectic equations to allow for similar
local simplifications i.e. using generalised complex structures.
[Banos 2007]

➤ Our LR metric is closely related to the scaled Sasakian metrics,
whose associated structures have been studied in detail.
[Gezer et al. 2014]

https://bit.ly/3w8ghsh
https://bit.ly/3ZH0heu
https://bit.ly/40w3pKh
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Thank you!

Any questions?
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