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Abstract

We present a covariant formulation of the incompressible Navier–Stokes equations on an arbitrary

Riemannian manifold. We demonstrate that the associated Monge–Ampère equation for the

pressure in two dimensions induces an almost(para)-Hermitian structure and that this structure

may be generalised to higher dimensions. The signature and curvature of the resulting Lychagin–

Rubtsov metric are proposed as diagnostic tools to determine the dominance of vorticity and

strain in a fluid region and methods of deducing topological information about the flow are

discussed. Symplectic and k-plectic reduction regimes are introduced as a method of simplifying

three-dimensional incompressible flows with symmetry to a two-dimensional problem. Explicit

examples of our constructions are provided in two and three dimensions. As this report is

to be submitted for examination at the end of the confirmation period of a PhD programme,

Appendix D catalogues the training modules completed over the previous 15 months, along with

two extended abstract seminar reviews, against which 20 further hours of training are to be

claimed.
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1
Introduction

One of the enduring challenges of fluid mechanics is to understand the topology fluid flows. In

particular, one wishes to describe the types of topological artefact that may be introduced by the

presence of vortices. However, at present, there is no systematic method to glean such information

from the underlying governing system of partial differential equations. Indeed, there is not even

a universally applicable definition of a vortex. This report aims to collate and extend current

research into how Monge–Ampère geometry and higher dimensional generalisations thereof may

be able to provide further insight into these problems.

1.1 Larchevêque, Weiss, and Pressure criterion

Weiss [2] proposed, via dynamical and numerical arguments, a local criterion for identifying

regions of elliptic/hyperbolic flow in two-dimensional fluids, modelled by the incompressible

Euler equations. Said criterion considers the difference between the magnitude of the rate of

strain squared and the square of the vorticity. It states that when the strain term dominates,

the flow is hyperbolic, and when the vorticity term dominates, the flow is elliptical.

A geometric argument for the Weiss criterion was later provided by Larchevêque in [3,4]; we

present a brief summary of the approach here. We begin this construction from the incompressible

Navier–Stokes flow equations, which are written in the familiar form

Bvi
Bt � �vjBjvi � Bip� ν∆vi (1.1.1a)

and

Bivi � 0 , (1.1.1b)

where ∆ :� BiBi is the standard Euclidean Laplacian, ν is the viscosity, and we use Einstein

summation convention, as we shall for the remainder of this report. We shall make the assump-

tions under which the Navier–Stokes equations take this form rigorous in the next section. By

1



2 1.1 Larchevêque, Weiss, and Pressure criterion

applying the divergence operator to equation (1.1.1a) and using (1.1.1b), we come to a Poisson

equation for the pressure ppx1, x2q

∆p � �pBivjqpBjviq � 1
2ζ

2 � SijSij , (1.1.1c)

in terms of the vorticity ζ and the strain-rate tensor Sij . Further, Larchevêque noted that, when

one uses the incompressibility constraint (1.1.1b) to write the velocity vpx1, x2q in terms of a

stream function ψpx1, x2q, equation (1.1.1c) takes the form of a Monge–Ampère equation

1
2∆p � B21ψB22ψ � pB1B2ψq2 . (1.1.2)

When the strain term dominates, the Laplacian of pressure is negative, and the Monge–Ampère

equation is of hyperbolic type. Similarly, when the vorticity term dominates, the Laplacian of

pressure is positive, and the Monge–Ampère equation is elliptic. Phrases of this form will become

a sort of mantra throughout this report. Larchevêque and Weiss both observe that the sign of

(1.1.1c) corresponds to the sign of the Gaussian curvature of the stream function, from which it

follows that, given a simply connected open subset V � R
2 on which vorticity dominates and

which is bounded by a closed streamline, then the surface given by z � ψpx1, x2q is convex and

all streamlines in V are closed contours.

Building on the work of [5, 6] in the class of approximations to the Navier–Stokes equations

which are applicable to ocean-atmosphere dynamics (specifically, balanced models such as the

semi-geostrophic and quasi-geostrophic equations), it was demonstrated in [7] that, for two-

dimensional incompressible flows, the Monge–Ampère equation (1.1.2) can be associated to an

almost-hyper-Kähler geometry. A key component of the aforementioned geometry for our analysis

is the almost-hyper-Kähler metric , which we shall denote ĝ and refer to as the Lychagin–Rubtsov

metric. It is noted in [8] that, while the Poisson equation for the pressure does not take the form

of a Monge–Ampère equation in the usual sense when considered in three dimensions, one may

still relate it to a Monge–Ampère structure via the generalised complex geometry of Hitchin [9]

and Banos [10]. Symplectic reductions from a specific class of three-dimensional examples into

two dimensions via the Marsden–Weinstein reduction process were also addressed in some detail

in [11]. Since we shall discuss each of these points in turn throughout the body of the report, we

provide no further detail here.

We close this section by reiterating a quote of Gibbon [12] also used in [11]. They state that

equations of the form (1.1.1c) "locally hold(s) the key to the formation of vortical structures

through the sign."1 In the next section, we shall introduce the covariant Navier–Stokes equations

and a generalisation of equation (1.1.1c) to flows on an arbitrary Riemannian manifold. We also

provide an outline of the report proper, which builds upon this generalisation.

1Referring here to the sign of the Euclidean Laplacian of the pressure.
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1.2 Covariant Navier–Stokes Equations

Let the domain of our fluid flow be given by an m-dimensional Riemannian manifold Mm with

metric g̊, which we shall refer to as the background metric. We will omit the superscript m where

the dimension of the manifold is not pertinent, or is otherwise clear from the context. Denote

the exterior derivative on M by d, the volume form on M by ’volM ’, and the Hodge star with

respect to g̊ by �g̊. Further, for differential k-forms η P ΩkpMq, define the norm square |η|2 by

|η|2volM :� η^�g̊η and the codifferential acting on η by δ̊η :� p�1qmpk�1q�1 �g̊ d�g̊ η. The Hodge

Laplacian is then given by ∆̊H :� δ̊d� dδ̊.

With regard to the fluid, let its pressure and viscosity respectively be given by the function

p P C8pMq and the scalar ν P R. The fluid flow is then described by the velocity (co-)vector

field - a one-parameter family of differential one-forms v P Ω1pMq, parametrised by parameter

time t P R. For simplicity we make the following additional assumptions:

• The fluid is homogeneous, that is, its density is uniform in space and constant in time.

Without loss of generality then, we set the density to be identically 1.

• The net external force field acting on the fluid is divergence-free for all time. This is

represented by a family of differential one-forms cptq P Ω1pMq satisfying δ̊c � 0.

We then impose that the flow satisfies the covariant Navier–Stokes equation corresponding to

our assumptions:

Bv
Bt � �p�1qm �g̊ pv ^ �g̊dvq � 1

2d|v|2 � dp� ν∆̊Hv � c , (1.2.1a)

supplemented with the incompressibility condition

δ̊v � 0 . (1.2.1b)

Hence, by applying the codifferential to equation (1.2.1a), we recover an equation for the pressure

solely in terms of the velocity field and the background metric

∆̊Hp � �|dv|2 � �g̊pv ^ �g̊∆̊Hvq � 1
2∆̊H|v|2 . (1.2.1c)

It is also possible to generalise (1.2.1c) a net external force c which is not divergence free, which

results in (1.2.1c) gaining a �δ̊c term on the left hand side. As this additional term will remain

grouped with the Laplacian of the pressure in all subsequent computations, we continue to

suppress external forces for the remainder of the report.

So that we may present the above equations in coordinate form, let M have coordinates

xi for i, j . . . � 1, . . .m. Let the Levi-Civita connection associated with g̊ij be given by ∇̊i,

with Christoffel symbols Γ̊ij
k. The components of the Riemann and Ricci curvature tensors
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are respectively denoted R̊ijk
l :� BiΓ̊jkl � BjΓ̊ikl � Γ̊jk

mΓ̊im
l � Γ̊ik

mΓ̊jm
l and R̊ij :� R̊kij

k. We

shall lower and raise indices using g̊ij and its inverse g̊ij . In computing the Hodge Laplacian in

coordinates, it is useful to invoke the Weitzenböck formula for p-forms η � 1
p!ηi1���ipdx

i1^. . .^dxip

p∆̊Hηqi1...ip � �∆̊Bηi1...ip � R̊mri1η|m|i2���ips , (1.2.2)

where ∆̊B :� g̊ij∇̊i∇̊j � ∇̊i∇̊i denotes the Beltrami Laplacian. Here and in the following,

parentheses (respectively, square brackets) denote normalised symmetrisation (respectively, anti-

symmetrisation) of the enclosed indices. With our newly introduced notation, the differential one-

form v is presented as v � vidxi with vi � vipt, x1, . . . , xmq and similarly for c. Equations (1.2.1)

then become
Bvi
Bt � �vj∇̊jv

i � Bip� ν∆̊Bv
i � νR̊ijvj � ci , (1.2.3a)

∇̊iv
i � 0 , (1.2.3b)

2f :� ∆̊Bp� vivjR̊ij � �p∇̊ivjqp∇̊jviq . (1.2.3c)

It should be apparent that upon fixing M � R
m (in particular m � 2) with the standard

Euclidean metric g̊ij � δij given by them-dimensional Kronecker delta, equations (1.2.3) simplify

to the more familiar (1.1.1) introduced in Section 1.1.

We now define the vorticity two-form and the strain tensor respectively by

ζij :� ∇̊rivjs � Brivjs and Sij :� ∇̊pivjq . (1.2.4)

It is clear, when presented in local coordinates, that the velocity vector field is a Killing vector

field precisely when the strain tensor vanishes. Further, define the velocity gradient tensor (VGT)

by

Aij :� ∇̊jvi � Sij � ζij . (1.2.5)

Recall that, for any matrix B, its decomposition B � Bsym�Banti with Bsym � 1
2pB �BT q and

Banti � 1
2pB �BT q, into symmetric and antisymmetric parts, satisfies the following identity:

tr rBsymBsyms � tr
�
BT

antiBanti

� � tr
�
B2

�
. (1.2.6)

Hence, it is possible to rewrite equation (1.2.3c) in the more descriptive form

2f � ζijζ
ij � SijSij � �Aj iAij , (1.2.7)

from which it is clear that the Laplacian of pressure of an incompressible fluid flow on an arbitrary

Riemannian manifold depends on the vorticity and strain of the flow, as it does in the two-

dimensional, Euclidean case (1.1.1c). However, the left hand side exhibits dependence on the
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Ricci tensor of the underlying manifold, as well as the velocity without derivatives, which do not

present themselves for flows on flat background.

Finally, as a result of the Poincaré lemma, it is always possible to locally solve, on an open

and contractible set U � M , the incompressibility constraint (1.2.1b), using the Hodge dual of

sections on U . Namely,

v � �g̊dψ for ψ P Ωm�2pUq Ø vi �
a
detp̊gq

pm� 2q!ε
i1���im�1iBi1ψi2���im�1 , (1.2.8)

where εi1���im is the Levi-Civita symbol with ε1���m � 1; note that ε1���m � 1
detp̊gqε1���m. Upon

subsituting this expression into (1.2.3c), we obtain a Monge–Ampère-type equation for the com-

ponents of the differential form ψ. Generally, we may refer to ψ P Ωm�2pUq as the stream

pm� 2q-form. However, for m � 2, ψ is known, from the fluid dynamics, as the stream function

- in this particular case we obtain a genuine Monge–Ampère equation. From this point onward,

we assume that M has a ‘good cover,’ where finite intersections of open sets are contractible,

in order to facilitate this. An equivalently acceptable notion is that spaces which are locally

contractible.

In the remainder of this report, we extend the work of [7,8] to demonstrate that (1.2.3c) is a

Monge–Ampère equation for two-dimensional incompressible flows on an arbitrary Riemannian

background, and that there exists a related almost (para-)Hermitian metric on the associated

cotangent bundle, see Chapter 2. Further, we investigate the properties of the Ricci curvature

of the Lychagin–Rubtsov metric and its pullback, and discuss how topological information may

be drawn from such quantities through the use of the local Gauß–Bonnet theorem. In Chapter 3

we demonstrate that there is a natural generalisation of this structure to fluid flows in higher

dimensions, using the language of multi-symplectic geometry. The main body of the text ends

with a discussion of the application of symplectic and k-plectic reductions to three-dimensional

flows in Chapter 4, following on from the work of [11]. In doing so, we propose that, for three-

dimensional flows with symmetry, it should be possible to consider some comparatively easy-to-

plot two-dimensional visualisation.

We conclude in Chapter 5 by presenting an outlook of future endeavours, focusing on the

potential use of generalised complex geometries to classify the k-plectic generalisation of Monge–

Ampère equations, as well as examining the global properties of the submanifolds which represent

solutions to Monge–Ampère equations in two dimensions.
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2
Monge–Ampère Geometry and Two-Dimensional Fluids

In this chapter, we shall demonstrate that the Poisson equation for the pressure in an incompress-

ible two-dimensional Navier–Stokes flow on a Riemannian manfold is in-fact a Monge–Ampère

equation and present an associated Monge–Ampère structure. An almost (para-)complex form

is found and the geometry induced by the related almost (para-)Hermitian metric is discussed.

Before applying ourselves to our specific fluid dynamical problem, let us first recapitulate some

of the fundamental definitions and results of Monge–Ampère theory.

2.1 Monge–Ampère Equations and their Associated Structures

We begin this chapter by recalling some of the key aspects of Monge–Ampère geometry, which

are required for our analysis of (1.2.3c) as a Monge–Ampère equation in two spatial dimensions.

We shall mostly follow the text book [13] and since we shall not deviate far from material relevant

to our application, we direct the interested reader there for more details. First, we supply the

(2m-dimensional) cotangent bundle T �M of our m-dimensional manifold M with coordinates

pxi, qiq, where xi are the local coordinates defined on M in the introduction, and qi are the

local fibre coordinates. Let ω denote a symplectic (closed, non-degenerate) form on T �M ; in

particular, for our choice of coordinates, the canonical symplectic form is ω � dqi ^ dxi. The

following structure can then be defined:

Definition 2.1.1 (Monge–Ampère Structure)

Following [14, 15], a differential m-form α P ΩmpT �Mq is called ω-effective when ω ^ α � 0.

The pair pω, αq is then called a Monge–Ampère structure on T �M and α is referred to as the

Monge–Ampère form.

Definition 2.1.2 (Embedded Submanifold)

Let L,N be smooth manifolds and ι : L Ñ N be a smooth (injective) immersion. The pair

pL, ιq is called a smoothly immersed submanifold of N . If, in addition, the immersion is also a

7



8 2.1 Monge–Ampère Equations and their Associated Structures

topological homeomorphism onto its image ιpLq � N (where ιpLq carries the subspace topology),

then pL, ιq is called a smoothly embedded submanifold of N .

From this point onwards, submanifolds are assumed to be smoothly embedded unless other-

wise stated. As an abuse of terminology, ιpLq may also be referred to as a submanifold. Note

also that the embedding ι is in-fact a diffeomorphism onto its image.

Definition 2.1.3 (Generalised Solutions of Monge–Ampère Structures)

A generalised solution of a Monge–Ampère structure pω, αq is a submanifold ι : L ãÑ T �M

which is Lagrangian with respect to ω, pdimpLq � dimpMq and ι�ω � 0q such that the additional

constraint ι�α � 0 holds.

Now consider a (global) section dψ : M Ñ T �M given by the differential of ψ P C8pMq
and described by xi Ñ pxi, Biψq. This defines a Lagrangian submanifold ιpLq :� dψpMq � T �M

with respect to the standard symplectic form and the requirement that ι�α � 0 then yields a

Monge–Ampère partial differential equation

∆αpψq :� pdψq�α � 0 , (2.1.1)

for which ψ is a classical/regular solution. We will often abuse terminology and refer to dψpMq
as a regular solution of the Monge–Ampère structure. Note that, while classical solutions to a

PDE are generally only required to be as differentiable as the maximum number p of derivatives

taken, we restrict ourselves to considering smooth classical solutions above. This ensures that,

for an m-dimensional manifold M , the Monge–Ampère operator ∆α : C8pMq Ñ ΩmpMq �
C8pMq takes smooth functions to smooth functions. One approach to properly considering

all classical solutions would be to treat Monge–Ampère operators of the form ∆α : C kpMq Ñ
Ωmk�ppMq � C k�ppMq, with k ¥ p, where Ωmk�ppMq denotesm-forms onM with only pk�pq-times

differentiable coefficients. In the context of generalised solutions, the Lagrangian submanifold

would then not be required to be smooth.

As v is only given by (1.2.8) on open, contractible subsets of M , it is not always necessary to

consider Lagrangian submanifolds ι : L ãÑ T �M that are globally given by a section dψ : M Ñ
T �M satisfying ιpLq � dψpMq. In light of this, we state the following definitions:

Definition 2.1.4 (Local Diffeomorphism)

A function h : L Ñ M is a local diffeomorphism if, for all y P L, there exists some open

neighbourhood V of y with V � L, such that hpV q is open in M and the restriction h|V of h

to V is a diffeomorphism onto its image. In this case, we may locally coordinatise hpV q by the

coordinates on V and vice-versa.

Definition 2.1.5 (Locally-a-section Submanifolds)

A submanifold ι : L ãÑ T �M is called locally-a-section if, for all y P L there exists Vy � L an

open neighbourhood of y, Uy �M open, and ψ P C8pUyq such that ιpVyq � dψpUyq.
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Banos [10] makes, without proof or precise definitions, the following claim, in order to estab-

lish locally-a-section submanifolds as a ‘nice’ subset of generalised solutions:

Proposition 2.1.6 (Locally-a-section and Local Diffeomorphisms)

Let the cotangent bundle T �M be equipped with the standard symplectic form ω and let π :

T �M ÑM be the canonical projection. A Lagrangian submanifold ι : L ãÑ T �M with respect to

ω is locally-a-section in the sense of Definition 2.1.5 if and only if the map π|L :� π � ι : LÑM

is a local diffeomorphism in the sense of Definition 2.1.4.

A proof of this result may be found in Appendix A. Hence, for locally-a-section Lagrangian

submanifolds, there exists an open neighbourhood Vy of any point y P L, such that ιpVyq �
dψypUyq, for some open Uy �M and ψy P C8pUyq the stream function determining the velocity

vector field on Uy. Additionally, Vy and Uy can be chosen such that they are diffeomorphic by

the above proposition, in which case Uy and Vy can be given the same coordinates and π|L is

locally the identity (on each Vy).

We close this section by making some observations regarding when the configuration space

M is two-dimensional, to make the presentation in the next section more transparent. Observe

that, when m � 2, generalised solutions are bi-Lagrangian, that is, Lagrangian with respect to

both ω and α. Further, it is known that Monge–Ampère equations in two-dimensional flat space

take the general form

Aψxx � 2Bψxy � Cψyy �D
�
ψxxψyy � pψxyq2

�� E � 0 , (2.1.2)

where we adopt the notation x1 � x, x2 � y and the coefficients A, . . . , E are smooth func-

tions of x, y, ψ, ψx, and ψy, where subscripts indicate partial derivatives. Observe that the only

non-linearity of second order derivatives is the determinant of a Hessian, with coefficient D.

Equation (2.1.2) may be naturally extended to curved, two-dimensional domains by replacing

partial derivatives with covariant ones, though some care has to be taken with the definition of

the determinant of the Hessian, as we shall see when we consider the two-dimensional pressure

equation in the next section.

2.2 Geometric Properties of Two-Dimensional Incompressible Fluid Flows

Let us now specialise to incompressible fluid flows (that is, where the flow is incompressible and

the fluid homogeneous) in m � 2 dimensions. In this case, the components of the Riemann

tensor are given in terms of the Ricci scalar R̊ as R̊ijkl � R̊g̊kriδjsl, so that the components of the

Ricci tensor are simply R̊ij � R̊
2 g̊ij . Furthermore, we denote by Hesspψq the Hessian of a function

ψ P C8pMq, which reads as Hesspψq � p∇̊iBjψq � p∇̊jBiψq in local coordinates. Then, (1.2.8)

yields vi � �
a
detp̊gqεijBjψ and so, the pressure constraint (1.2.1c) on an open, contractible
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neighbourhood U �M becomes

1
2∆̊Bp � det

�̊
g�1Hesspψq�� R̊

4 |dψ|2 ðñ 1
2∇̊

iBip � det
�
∇̊iBjψ

	
� R̊

4 p∇̊iψqpBiψq , (2.2.1)

where the Hessian matrix is pre-multiplied by the inverse metric g̊�1 so that the determinant

can be taken as it would on a matrix.1 Hence, solving for the stream function allows us to

locally describe the velocity vector field. Observe that, by comparison with (2.1.2), the equa-

tion (2.2.1) takes the form of a Monge–Ampère equation for the stream function ψ on some

arbitrary Riemannian manifold.

Importantly, it is possible to find Monge–Ampère structures from which the pressure con-

straint (2.2.1) arises when considering, for example, generalised solutions defined via sections, as

discussed around (2.1.1). Indeed, it is possible to check that the differential forms

ω :� ∇̊qi ^ dxi � dqi ^ dxi ,

α :�
?

detp̊gq
2

�
εij∇̊qi ^ ∇̊qj �

�
1
2∆̊Bp� R̊

4 |q|2
�looooooooomooooooooon

�: f̂

εijdxi ^ dxj
� (2.2.2)

on T �M , where ∇̊qi :� dqi � dxjΓ̊jikqk, form a Monge–Ampère structure on T �M . Recall that
1
2ω^ω is the Liouville volume form with respect to ω. Observing α^α � f̂∇̊qi^dxi^∇̊qj^dxj �
f̂ω^ω then yields that α is non-degenerate if and only if f̂ � 0. Additionally, in Section 3.3, we

shall show that α is closed. Furthermore, while ι�ω � 0 is automatic on Lagrangian submanifolds

ι : L ãÑ T �M which are locally-a-section, the condition ι�α � 0 is equivalent to ψ satisfying the

Monge–Ampère equation (2.2.1). Additionally, note that pulling back α via qi Ñ vi � p�g̊dψqi
again yields (2.2.1) for incompressible flows; this observation shall inform the alternative Monge–

Ampère structure chosen in Section 3.2, which more naturally generalises to higher dimensions.

Next, following [15] and as discussed in Section B.1, we associate with the Monge–Ampère

structure (2.2.2) an endomorphism Ĵ of the tangent bundle of T �M defined by

αb
|f̂ |

�: Ĵ  ω , (2.2.3)

with f̂ as in (2.2.2) and under the assumption that f̂ does not vanish. By virtue of the results

of [15], Ĵ2 � � sgnpf̂q, hence Ĵ is an almost complex structure on T �M when f̂ ¡ 0 (in which case

the Monge–Ampère equation (2.2.1) is elliptic) and an almost para-complex structure on T �M

when f̂   0 (in which case the Monge–Ampère equation (2.2.1) is hyperbolic). Furthermore, we

1A matrix-like quantity Ai
j has determinant detpAq � 1

2
detp̊gqϵi1,i2Ai1

j1Ai2
j2ϵj1,j2 . Of course, we could

alternatively define an analogous determinant for p0, 2q tensors by raising the indices on the second Levi-Civita
symbol, but our choice makes for a more intuitive reading.
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can always find a differential two-form K̂ which is of type p1, 1q with respect to Ĵ ,1 such that

K̂ ^ ω � 0, K̂ ^ pĴ  ωq � 0, and K̂ ^ K̂ � 0. Explicitly, we may take

K̂ :� �sgnpf̂q
b
|f̂ | ∇̊qi ^ �g̊dxi . (2.2.4)

where f̂ is again assumed to be non-vanishing, such that K̂ is well defined and satisfies the

aforementioned constraints.

Since K̂pĴX, Y q � �K̂pX, ĴY q for all X,Y P XpT �Mq, we are naturally led to the almost

(para-)Hermitian metric ĝpX,Y q :� K̂pX, ĴY q on T �M for all X,Y P XpT �Mq, which is expli-

citly given by

ĝ � 1
2 f̂ g̊ijdx

i d dxj � 1
2 g̊
ij∇̊qi d ∇̊qj . (2.2.5)

Evidently, for f̂ ¡ 0, in the elliptic case, the metric ĝ is Riemannian while for f̂   0, the

hyperbolic case, it is Kleinian. Observe that, by the Lychagin–Rubtsov theorem [13, 15], the

endomorphism (2.2.3) is integrable if and only if f̂ is constant, in which case Ĵ is a (para-

)complex structure. Additionally, (2.2.4) is promoted to a Kähler form if and only if it is closed,

which occurs precisely when f̂ is constant. It follows that f̂ being constant is a necessary and

sufficient condition for (2.2.5) to be a Kähler metric.

Note also that the vorticity two-form (1.2.4) can be written as

ζij � 1
2

a
detp̊gq εij ζ with ζ :� ∆̊Bψ ùñ ζijζ

ij � 1
2ζ

2 , (2.2.6)

where ζ is referred to as the vorticity of a two-dimensional flow, in the spirit of (1.1.1c). Then,

it can be seen that the pullback g :� ι�ĝ of (2.2.5) to a Lagrangian submanifold L described by

a section dψ is

g � 1
2gijdx

i d dxj with gij :� ζ∇̊iBjψ , (2.2.7)

where we have substituted (2.2.6) and used that

f :� ι�f̂ � 1
2∆̊Bp� R̊

4 |dψ|2 � det
�
∇̊iBjψ

	
, (2.2.8a)

by the pressure constraint (2.2.1), as well as

det
�
∇̊kBlψ

	
g̊ij � g̊klp∇̊iBkψqp∇̊jBlψq � ∆̊Bψ∇̊iBjψ . (2.2.8b)

Evidently, in regions where the vorticity vanishes, this metric vanishes as well. Note also that

when both tr
�̊
gikgkj

� ¡ 0 and det
�̊
gikgkj

� ¡ 0, it follows that g is Riemannian. As tr
�̊
gikgkj

� �
ζ2, the former condition is always satisfied, while det

�̊
gikgkj

� � ζ2 det
�
∇̊iBjψ

	
� ζ2f implies

that the latter is satisfied if and only if f ¡ 0. Similarly, f   0 implies that g is Kleinian. Hence,

1That is, K̂ is an almost (para-)Hermitian form.
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the signature of g is independent of the sign of the vorticity (2.2.6) and only depends on the sign

of f . Furthermore, since ∇̊iBjψ is symmetric and continuous in xi for ψ P C8pMq, it follows

that, on simply connected regions of M with f ¡ 0, ζ � tr
�
∇̊iBjψ

	
has fixed sign. Hence, the

vorticity does not vanish where it dominates, that is, where g is Riemannian.

Upon comparing (1.2.7) and (2.2.8a), we observe that f � 1
2pζijζij � SijS

ijq. Hence, when

f ¡ 0 and the metric g is Riemannian, vorticity dominates, yet when f   0, strain dominates.

This is essentially a covariantisation of the pressure criterion for a vortex, as given in [3, 4]

and discussed in Section 1.1. That is, f compensates for the effect of the curvature R̊ on the

Laplacian of pressure when the background metric is not flat. Hence, we have found a geometric

motivation for Weiss-like criterion to hold on a Riemannian manifold and, as we shall see in the

next chapter, also in higher dimensions.

2.2.1 Curvature and Topology of Two-Dimensional Incompressible Fluid Flows

Let us now consider the curvatures associated with the Lychagin–Rubtsov metric and its pullback,

in order to observe how the topological nature of flow regimes may depend on the vorticity and

strain. We refer the reader to Appendix C for more detail. To begin, we quote a result from said

appendix, specialised to the two dimensional case; the curvature scalar for the metric (2.2.5) is

given by

R̂ � 1
f̂
R̊� 1

4f̂
R̊ijk

lR̊ijkmqkqm � ∆̂B log
�
|f̂ |

	
� g̊ij

� B2
BqiBqj log

�
|f̂ |

	
� 1

2

B
Bqi log

�
|f̂ |

	 B
Bqj log

�
|f̂ |

	�
,

(2.2.9)

where ∆̂B is the Beltrami Laplacian with respect to ĝ, R̊ and R̊ijk
l are the Ricci scalar and

Riemann tensor of g̊ respectively, and f̂ is defined as above.

The curvature scalar for the pullback metric (2.2.7) requires a little extra in the way of

notation to write down. In particular, we define

ψi1���in :� ∇̊pi1 � � � ∇̊in�1Binqψ , (2.2.10)

for n P N. A brief calculation shows that, for n ¡ 1, ψi1���in can be expressed in terms of the

components of the strain tensor (1.2.4) and the vorticity (2.2.6) as

ψi1���in � �
a
detp̊gq̊gjkεjpi1∇̊i2 � � � ∇̊in�1Sinqk � 1

2 g̊pi1i2∇̊i3 � � � ∇̊in�1Binqζ . (2.2.11)

Then, using (2.2.6), write gij � ζg̃ij with g̃ij :� ψij which, for ζ � 0, gives the pullback metric g

a conformal structure, with conformal factor |ζ|. Hence, the Christoffel symbols Γij
k of gij take

the form

Γij
k � Γ̃ij

k � Bpiδjqk logp|ζ|q � 1
2 g̃ij g̃

klBl logp|ζ|q , (2.2.12a)
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where g̃ij denotes the inverse of the Hessian metric g̃ij , and the Γ̃ij
k are its Christoffel symbols,

which in turn are given by

Γ̃ij
k � Γ̊ij

k � 1
2Υijlg̃

lk with Υijk :� ψijk � 4
3ψlR̊kpijq

l . (2.2.12b)

Consequently, the curvature scalar R of gij is given by

R � 1
ζ

"
R̃� 1?

| detpg̃q|Bi
�a
|detpg̃q| g̃ijBj logp|ζ|q

�*
, (2.2.13a)

where R̃ is the curvature scalar for g̃ij ,

R̃ � 1
2 g̃
ij g̊ijR̊� 1

4 g̃
ij g̃klg̃mnpΥijmΥkln �ΥikmΥjlnq

� 2
3 g̃
ij g̃kl

�
ψmn

�
δmi R̊jpklq

n � δmj R̊lpikqn
�� ψm�∇̊iR̊jpklqm � ∇̊jR̊lpikqm

��
.

(2.2.13b)

Importantly, no fourth-order derivatives of the stream function appear, and in that sense, the

curvature scalar of the pullback metric (2.2.7) is generated by gradients of vorticity and strain,

see (2.2.11). Furthermore, ψi occurs without any further derivatives, hence the curvature scalar

depends also on the components of velocity directly. Note also that the conformal structure

of the metric (2.2.7) isolates a factor of 1
ζ in (2.2.13a), suggesting that contours along which

vorticity vanishes may present as curvature singularities in the geometry. However, this does

not hold in general — see Section 2.3.2 for a counterexample, where vanishing vorticity only

induces degeneracies in the pullback metric (2.2.7) and not in the curvature (2.2.13a). For

further discussion on the singularity structures of the Lychagin–Rubtsov metric and its pullback,

see [16] in the context of semi-geostrophic theory.

Consider some incompressible Navier–Stokes flow with M its Riemannian background mani-

fold and ι : L ãÑ T �M a locally-a-section Lagrangian submanifold defined by ι�ω � 0 and

ι�α � 0, that is, L is a (sufficiently nice) generalised solution of (2.2.2). Then there exist open

subsets U � M , V � L and a stream function ψ P C8pUq, such that ιpV q � dψpUq. Then

by Proposition 2.1.6, U and V can be chosen such that they are diffeomorphic. Suppose now

that there exists a compact region Σ � U on which f ¡ 0. Then we may define the compact

region LΣ � V � L by ιpLΣq :� dψpΣq. In particular, if ιpLq is described (globally) by a section

dψ : M Ñ T �M , then we can do this for any compact subset of Σ � M . It is now natural

to consider the question of how we might use the local Gauß–Bonnet theorem (stated below, or

see [17, Theorem 4.2] for details) to relate the geometry of LΣ, as described by the curvature

provided above, to its topology, as given by the Euler characteristic χpLΣq. For convenience, we

provide the necessary theorem here:

Theorem 2.2.1 (Local Gauß–Bonnet Theorem)

Let Σ be a two-dimensional compact oriented manifold with Riemannian metric g. Suppose that



14 2.2 Geometric Properties of Two-Dimensional Incompressible Fluid Flows

Σ has a boundary that is composed of piecewise simple regular closed arc-length parametrised

curves γα, BΣ �
�
α γα. Let R be the curvature scalar of the Levi-Civita connection of g, volΣ

the volume form on Σ, and κ the geodesic curvature. Furthermore, let φβ be the exterior angles

at the non-smooth points of the boundary BΣ. Then, the Euler number χpΣq of Σ is given by

1
2

»
Σ
volΣR�

¸
α

»
γα

ds κpγαpsqq �
¸
β

φβ � 2πχpΣq . (2.2.14)

Given an arc-length parametrised curve γ : sÑ px1psq, x2psqq, there are many ways of expressing

the geodesic curvature κ at a given point γpsq. One particular expression, attributed to Beltrami,

is suitable for our purposes. When adapted to the notation adopted for the metric (2.2.7),

Beltrami’s formula takes the form

κpγpsqq �
a
|detpgpxpsqqq| εij 9xipsq

�
:xjpsq � Γkl

jpxpsqq 9xkpsq 9xlpsq� , (2.2.15)

where the superposed dots indicate derivatives with respect to the arc-length parameter s.

Let Σ � U � M and LΣ � V � L be as above. Then, since U and V are chosen to

be diffeomorphic, it follows χpΣq � χpLΣq. Recall that we impose f ¡ 0 on Σ, such that the

metric (2.2.7) remains Riemannian on LΣ. Furthermore, if such a Σ is bounded by a simple closed

curve, such as a closed isovortical contour, or a closed stream line, then Σ is homeomorphic to

a disc, so χpLΣq � 1. Hence, upon considering compact Σ � U �M , with f ¡ 0 and boundary

given by a simple, closed, arc-length parametrised curve γ, (2.2.14) reduces to»
γ
ds κpγpsqq � 2π � 1

2

»
Σ
volΣR , (2.2.16)

That is, the mean curvature of the boundary is determined by the average curvature of the

interior. Noting (2.2.13a), (2.2.13b), and (2.2.15), we remark that at a formal qualitative level,

the local Gauß–Bonnet relation (2.2.16) is a statement to the effect that

mean curvature of the boundary �
� 2π �mean gradients of vorticity and strain.

(2.2.17)

In this sense, when f ¡ 0, we can use Monge–Ampère geometry to assign a topology to a ‘vortex’,

with the vortex being described by LΣ – the image of the gradient of the stream function. When

the pullback metric (2.2.7) is Kleinian, the Gauß–Bonnet theorem can be extended to such

cases, under certain conditions pertaining to the boundary BLΣ — e.g. it should have no null

segments — however, the link between topology as quantified by the Euler characteristic and

the Gauß–Bonnet theorem becomes much more tenuous [18,19].
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2.3 Incompressible Fluids on the Euclidean Plane — Examples

In this section, we adopt the notation x :� x1 and y :� x2 and consider flows in R
2 with

background metric g̊ij � δij , to verify consistency with known results in the most straightforward

case. We shall present the simplified formulæ in this case as well as computing the curvatures

of the Lychagin–Rubtsov metric and its pullback for the classical example of a two-dimensional

Taylor–Green vortex.

2.3.1 Simplified Formulae in the Euclidean Case

For convenience, we summarise the relevant simplified formulæ before providing explicit com-

putations. Evidently, R̊ � 0 in this case, and so we find for f̂ given in (2.2.2) and f given

below (2.2.7) that

f̂ � 1
2∆p � B2xψB2yψ � pBxByψq2 � f with ∆ :� B2x � B2y . (2.3.1)

Hence, the metric (2.2.5) on T �R2 takes the form

ĝ � diagpfδij , δijq , (2.3.2)

with its signature dictated by the sign of f . This is singular if and only if f � 0 and the

corresponding curvature scalar (2.2.9) (see also (C.2.13)) becomes

R̂ � 1
f3

�BxfBxf � ByfByf � f∆f� . (2.3.3)

The vorticity (2.2.6) is simply ζ � ∆ψ for the stream function ψ � ψpx, yq so the pullback

metric (2.2.7) becomes

pgijq � ζ

�
B2xψ BxByψ
BxByψ B2yψ

�
� ζ

2

�
ζ � 2Sxy �2Sxx
�2Sxx ζ � 2Sxy

�
, (2.3.4)

where Sxx � �Syy and Sxy are the components of strain tensor (1.2.4), describing a shearing

deformation at an angle of 1
2 arctan

�
Sxy

Sxx

	
, without overall dilation, since our flow is divergence

free [20,21]. The shearing deformation can be best described physically as the elliptic stretching

of a circle of particles about each hyperbolic fixed point. Graphically, the shearing angle manifests

as the angle of the asymptotes of the hyperbolæ to the coordinate axes, at these fixed points.

Observe that g is singular when the vorticity vanishes, in addition to when the Hessian part of the

metric is singular, that is, where f � 0 (see (2.2.8a)). Another invariant of the velocity-gradient

tensor, the resultant deformation DR [20], occurs in the expression for the eigenvalues of (2.2.7),

E� � 1
2

�
ζ2 � |ζ|DR

�
with D2

R :� 4pBxByψq2 �
�B2xψ � B2yψ�2 . (2.3.5)
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Note that D2
R � ζ2 � 4f and so, the eigenvalues take the same sign for f ¡ 0 and opposite

sign for f   0, provided they are both non-zero, as should be expected from the discussion

following (2.2.8a). In particular, this tells us that the coordinate singularities depend precisely

on the vorticity and the resultant deformation (and in turn the vorticity and f). Finally, the

curvature scalars (2.2.13) reduce to

R � 1

ζ

"
R̃� 1?

| detpg̃q|Bi
�a|detpg̃q| g̃ijBj logp|ζ|q�

*
, (2.3.6a)

where

pg̃ijq � 1

f

�
B2yψ �BxByψ

�BxByψ B2xψ

�
, (2.3.6b)

and

R̃ � �1
4 g̃
ij g̃klg̃mnpBiBjBmψ BkBlBnψ � BiBkBmψ BjBlBnψq . (2.3.6c)

2.3.2 The Taylor–Green Vortex

The Taylor–Green vortex [22] is described by the stream function

ψpx, y; tq :� �F ptq cospaxq cospbyq , (2.3.7)

where F is a function of time t alone and a, b P R are parameters. See Figure 2.3.1a. All plots

for this example shall use parameters a � b � 1 and time t such that F ptq � 1.

(a) The streamlines of ψ, partitioning the
domain into squares of side length π. The
sign of ψ produces a check pattern.

(b) The contour plot for f , with
positive/negative regions around el-
liptic/hyperbolic fixed points of the flow.

Figure 2.3.1: Plots of the iso-lines of (2.3.7) and (2.3.8). Observe that streamlines corresponding

to values of sufficiently large magnitude are closed contours contained in regions of positive f ,

where vorticity dominates.
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It follows that (2.3.1) is simply given by

f � 1
2a

2b2F 2rcosp2axq � cosp2byqs (2.3.8)

(see Figure 2.3.1b) and therefore, the curvature scalar (2.3.3) (see Figure 2.3.3a) is written

R̂ � 8pa2 � b2qr1� cosp2axq cosp2byqs
a2b2F 2rcosp2axq � cosp2byqs3 . (2.3.9)

Consequently, when pabF q2 � 0 and cosp2axq � cosp2byq ¡ 0, the metric (2.3.2) is Rieman-

nian with a positive curvature scalar and vorticity dominates. Alternatively, taking cosp2axq �
cosp2byq   0 yields that the metric is Kleinian with negative curvature scalar, and strain dom-

inates. Observe that the signs of f and R̂ coincide. Both the metric and curvature scalar are

singular when pabF q2 � 0 and along the lines y � �a
bx � π

2bp2n � 1q for all n P Z (where

cosp2axq � cosp2byq � 0), corresponding to where f � 0.

(a) Contour plot for E�, which is non-
negative on the whole domain.

(b) Contour plot E�, which is non-positive
within the dark blue regions.

Figure 2.3.2: Plots of the eigenvalues (2.3.12) of the pullback metric (2.3.11).

Furthermore, the vorticity is given by

ζ � pa2 � b2qF cospaxq cospbyq � �pa2 � b2qψ (2.3.10)

and the pullback metric (2.3.4) becomes

pgijq � pa2 � b2qF 2

4

�
a2r1� cosp2axqsr1� cosp2byqs �ab sinp2axq sinp2byq

�ab sinp2axq sinp2byq b2r1� cosp2axqsr1� cosp2byqs

�
.

(2.3.11)

Its eigenvalues (2.3.5), as shown in Section 2.3.2 are given by

E� � F 2pa2 � b2q
4

�
2
�
a2 � b2� cos2paxq cos2pbyq � | cospaxq cospbyq|aẼ

�
, (2.3.12a)



18 2.3 Incompressible Fluids on the Euclidean Plane — Examples

with

Ẽ :� �
a4 � 6a2b2 � b4�rcosp2axq � cosp2byqs � �

a2 � b2�2r1� cosp2axq cosp2byqs . (2.3.12b)

Using (2.3.4), we can explicitly compute the components of strain to be Sxx � Syy �
�Fab sinpaxq sinpbyq and Sxy � 1

2F pa2 � b2q cospaxq cospbyq. It follows that the shear is par-

allel to the coordinate axes at the hyperbolic fixed points given by π
2 p2m � 1, 2n � 1q for all

m,n P Z. The curvature scalars (2.3.6a) corresponding to (2.3.11) are

R � 8

F 2pa2 � b2qrcosp2axq � cosp2byqs2 and R̃ � 0 . (2.3.13)

Evidently, R is always positive, as shown in Figure 2.3.3b.

(a) Contour plot for the curvature scalar
R̂ on T�R2. The signs of R̂ and f̂ agree.

(b) Contour plot for the curvature scalar
R. This is positive on all T�R2.

Figure 2.3.3: Contour plots of the curvatures (2.3.9) and (2.3.13) respectively. Note that both

are singular on the curves y � �x� π
2 p2n� 1q for all n P Z, along which f � 0.

Observe that E� is everywhere non-negative, so the signature of the metric (2.3.11) is de-

termined by E�. Note when cosp2axq � cosp2byq » 0, E� » 0, and the metric g is Rieman-

nian/Kleinian and vorticity/strain dominates, despite the curvature R being everywhere positive.

Also, E� � 0 for cosp2axq� cosp2byq � 0, which are hence coordinate singularities for g. In-fact,

they are curvature singularities, see (2.3.13). Further, both eigenvalues (2.3.12) also vanish on

the curves x � π
2ap2n � 1q and y � π

2bp2n � 1q for all n P Z, along which the stream func-

tion (2.3.7) and vorticity (2.3.10) also vanish. It follows that the metric (2.3.11) is degenerate

along these curves, while the curvature scalar (2.3.13) is not singular, hence x � π
2ap2n� 1q and

y � π
2bp2n� 1q are not curvature singularities of the metric and only arise due to the coordinate

choice. Note that while the vorticity changes sign as the contours x � π
2ap2n�1q or y � π

2bp2n�1q
are crossed, the metric (2.3.11) is Kleinian on both sides; this falls in line with Larchevêque’s

observations [4] that the vorticity has constant sign in Riemannian regions, where it dominates.
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In summary, we observe that the contours described by cosp2axq� cosp2byq � 0, along which

f vanishes, are curvature singularities for the metrics ĝ and g, while the contours x � π
2ap2n�1q

and y � π
2bp2n � 1q, along which ζ vanishes, are only coordinate singularities for g. Note that

the degeneracies of (2.2.5) and (2.2.7) which we have treated so far were local in the sense

that they depend on px, yq P R2. Additionally, there are global degeneracies given by choices

of a, b, and F ptq, which can be shown to arise as a result of more trivial flow scenarios. For

example, setting F � 0 or a � b � 0 fixes ψpx, y; tq � �F ptq, in which case all components

of the velocity vanish and the fluid is stationary. Alternatively, when only a � 0 (respectively

b � 0), the stream function (2.3.7) depends only on the y coordinate (respectively x coordinate)

and the flow becomes essentially one-dimensional. In each of these cases, f � 0 and both the

Lychagin–Rubtsov metric and its pullback are everywhere degenerate and their curvatures are

ill-defined.

2.4 Chapter Summary

In this chapter, we have summarised key definitions from the framework of Monge–Ampère geo-

metry. Using said framework, we have demonstrated that the covariant Navier–Stokes equations

for homogeneous, incompressible fluid flows in two dimensions take the form of a genuine Monge–

Ampère equation and the associated Monge–Ampère structure (2.2.2) was provided. Solutions

to the Navier–Stokes equations were then shown to correspond to bi-Lagrangian submanifolds

ι : L ãÑ T �M of the cotangent bundle, a subclass of which are described by local sections.

Utilising results of [15], an almost (para-)complex structure (2.2.3) and almost (para-)Hermitian

form (2.2.4) were associated with the Monge–Ampère structure and used to induce the Lychagin–

Rubtsov metric (2.2.5) on the cotangent bundle. The dominance of vorticity and strain was shown

to be determined by the signs of the Lychagin–Rubtsov metric and its pullback (2.2.7) to a Lag-

rangian submanifold described by a section, and in turn by the sign of the modified Laplacian of

pressure ∆̊Bp� R̊ijp∇̊iψqpBiψq, generalising the Weiss criterion to flows with curved background.

It was then shown that the curvature (2.2.13), of the pullback metric is given by gradients of vor-

ticity and strain and can be used to obtain topological information about the flow, for example

via the Gauß–Bonnet theorem. We have seen an example of how these criterion manifest in the

Euclidean plane, in the form of the Taylor–Green vortex. In the next chapter, we shall introduce

the language of k-plectic geometry and reformulate the problem in terms of a Monge–Ampère

structure with T-dual symplectic form, in order to generalise to higher dimensional flows.
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3
k-Plectic Geometry and Incompressible Fluid Flows

While symplectic geometry proves to be a suitable framework for considering incompressible

flows in two dimensions, note that incompressibility is not a natural consequence of the geo-

metry. Rather, we assume that the flow is incompressible, such that (locally) a stream function

determining the velocity exists, then solve the Poisson Monge–Ampère equation for that stream

function. It turns out that the language of k-plectic geometry not only provides a way of encod-

ing the incompressibility via a differential form, but also allows us to generalise our work so far

to higher dimensional fluid flows, where the flow is not described by a stream function (rather,

a stream form (1.2.8)) and hence does not have a genuine Monge–Ampère equation.

3.1 k-Plectic Geometry

In this section we provide a summary of the key facts from k-plectic geometry that are required

in subsequent computations. For further details of the field, we refer the interested reader to

works [23] and [24,25]. To begin:

Definition 3.1.1 (k-Plectic Vector Space)

Let V be a real vector space. A differential pk � 1q-form ϖ P �k�1 V � is called non-degenerate

precisely when the contraction map  : V Ñ �k�1 V � given by v Ñ v  ϖ, is injective on V .

We then call pV,ϖq a k-plectic vector space.

Note that, in general, the contraction map is not surjective. However, consider when k � 1

and ϖ is a non-degenerate 2-form. In particular, ϖ is a symplectic form on V and we recover the

standard case of a symplectic vector space. Further, injectivity of the contraction map implies

surjectivity by the rank–nullity theorem and hence V � V �.

In order to define a k-plectic analogue of a Lagrangian subspace, we require a suitable gener-

alisation of the orthogonal complement of a vector subspace U � V . Note that as a k-form takes

k-vectors, there are k different classes of orthogonal complement, which we index as follows:

21
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Definition 3.1.2 (ℓ-th Orthogonal Complement)

For U � V a vector subspace of k-plectic vector space pV,ϖq, we define the ℓ-th orthogonal

complement UK,ℓ for ℓ � 1, . . . , k with respect to ϖ by

UK,ℓ :� tv P V | v  u1 . . . uℓ  ϖ � 0 for all u1, . . . uℓ P Uu . (3.1.1)

The vector subspace U is called an ℓ-Lagrangian subspace of V if and only if U � UK,ℓ for

some ℓ � 1, . . . , k. For k � 1, we can only have ℓ � 1, which corresponds to the usual notion

of a Lagrangian subspace with respect to the symplectic form ϖ. Note, unlike Lagrangian

subspaces, which all have dimension 1
2 dimpV q, for k ¡ 1, ℓ-Lagrangian subspaces may have

different dimensions. We conclude this section by extending the above definitions to manifolds:

Definition 3.1.3 (k-Plectic Manifolds)

Let ϖ P Ωk�1pNq be a point-wise non-degenerate differental pk�1q-form on an (almost k-plectic)

manifold N . If, in addition, ϖ is closed, then N is a k-plectic manifold with k-plectic structure

form ϖ.

It is a standard exercise to show that, when k � 1 and N is 2m-dimensional, non-degeneracy

of a differential 2-form ϖ is equivalent to ϖ^ . . .^ϖ � 0 P Ω2mpNq, which is precisely the sense

we applied in earlier sections.

Definition 3.1.4 (ℓ-Lagrangian Submanifolds)

Let pN,ϖq be a k-plectic manifold, with submanifold ι : L ãÑ N . For ℓ � 1, . . . , k, let pTpLqK,ℓ
denote the ℓ-th orthogonal complement of the tangent space to L at p P L. We define the corres-

ponding bundle

TLK,ℓ :�
¤
p PL

!
pp,Xpq

���Xp P pTpLqK,ℓ
)
. (3.1.2)

We call L an ℓ-Lagrangian submanifold of N if and only if TL � TLK,ℓ for some ℓ � 1, . . . , k.

3.2 The Bridge Between Dimensions

Before discussing fluid flows in higher dimensions, let us revisit the two-dimensional problem

and provide an alternative formulation. In Section 2.2, we have seen that the Monge–Ampère

structure (2.2.2) encodes incompressible fluids on a two-dimensional Riemannian manifold pM, g̊q.
As before, let pxi, qiq be local coordinates on T �M . This time, rather than using the standard

symplectic structure (2.2.2) on T �M , we now propose to take the ‘T-dual’ form

ϖ :� ∇̊qi ^ �g̊dxi , (3.2.1)
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that is, (2.2.4) without the pre-factor. It should be evident that ϖ is non-degenerate1 and shall

demonstrate in Section 3.3 that it is closed, hence is a symplectic (read: 1-plectic) form in two

dimensions. It is then easily seen that the condition ι�ϖ � 0 with ι : L ãÑ T �M given by

ι : xi ÞÑ pxi, qiq :� pxi, vipxqq , (3.2.2)

where vi � vipxq are the components of the velocity (co-)vector field in local coordinates, is

equivalent to requiring the incompressibility condition (1.2.3b). Thus, a Lagrangian submanifold

L of T �M is again obtained, this time with respect to ϖ rather than ω, such that L encodes

incompressibility.

Moreover, using that in two dimensions, �g̊pdxi^dxjq �
a
detp̊gqεij and the volume form on

M is given by volM :�
?

detp̊gq
2 εijdxi^ dxj , we may rewrite the Monge–Ampère form α defined

in (2.2.2) as

α � 1
2∇̊qi ^ ∇̊qj ^ �g̊pdxi ^ dxjq � f̂ volM . (3.2.3)

As for ϖ, we will demonstrate in the next section that α is closed in arbitrary dimension and,

as discussed around (2.2.2), α is non-degenerate in two dimensions precisely when f̂ � 0. Addi-

tionally, the requirement ι�α � 0 under (3.2.2) is equivalent to the pressure constraint (1.2.3c),

provided that we simultaneously demand that ι�ϖ � 0. Further, as discussed around equa-

tion (1.2.8), for incompressible flows, it is possible to find a stream function ψ P C8pUq on an

open, contractible set U �M , such that v � �g̊dψ. Upon describing the velocity in this manner,

we recover the Monge–Ampère equation presentation of the pressure constraint (2.2.1) on U .

That is, the submanifolds given by pulling back α and ϖ via �g̊dψ, are precisely those given by

the pullback of α and ω via dψ, as discussed in Chapter 2, hence correspond to smooth classical

solutions our Monge–Ampère equation on U . Notice that we also have α ^ ϖ � 0 so that the

pair pϖ,αq is again a Monge–Ampère structure.

We may now follow our discussion in Section 2.2 and define an endomorphism Ĵ of the

tangent bundle XpT �Mq by
αb
|f̂ |

�: Ĵ  ϖ , (3.2.4)

under the assumption that f̂ does not vanish. As before, Ĵ 2 � � sgnpf̂q, hence Ĵ is an almost

complex structure when f̂ ¡ 0 and an almost para-complex structure when f̂   0. We make the

following observation concerning Ĵ in two dimensions, which will be pertinent when we consider

three dimensional flows in the following two chapters: Letting ε denote the dual poly-vector field

to the Liouville volume form 1
2ω

2, it is possible to rewrite (3.2.4) as

ĴX � 1b
|f̂ |

ε pϖ ^X  αq for all X P XpT �Mq . (3.2.5)

1In-fact, we have already seen this in our discussion around (2.2.4).
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As in Section 2.2, we can always find a differential two-form K̂ of type p1, 1q with respect to

Ĵ such that K̂ ^ϖ � 0, K̂ ^ pĴ  ϖq � 0, and K̂ ^ K̂ � 0. In particular, we choose

K̂ :� sgnpf̂q
b
|f̂ | ∇̊qi ^ dxi , (3.2.6)

that is, the standard symplectic structure (2.2.2) with the negative of the scale factor that ϖ has

in (2.2.4). Importantly, the compatibility of K̂ and Ĵ , given by KpX,Y q � sgnpf̂qKpJX,J Y q,
again yields the metric (2.2.5). Note that the Lychagin–Rubtsov theorem again yields that the

endomorphism (3.2.4) is integrable if and only if f̂ is constant. This coincides precisely with

when (3.2.6) is closed and is hence promoted from an almost (para-)Hermitian form to a Kähler

form. In turn, f̂ � 0 is a necessary and sufficient condition for (2.2.5) to be a Kähler metric,

this time with respect to K̂ and Ĵ . We shall show in Section B.2 that this can be refined to a

hyper-Kähler structure à la [7].

In conclusion, the Monge–Ampère structure pϖ,αq, with ϖ defined by (3.2.1) and α written

as (3.2.3), represents an alternative means to describe two-dimensional incompressible fluids.

Whilst the Monge–Ampère structure (2.2.2) yields manifestly the description of the fluid flow

in terms of a stream function and a genuine Monge–Ampère equation, the advantage of this

alternative Monge–Ampère structure is that with this choice, we can straightforwardly generalise

our treatment to fluid flows in any dimension, as we shall explain shortly.

Remark 3.2.1 (Choices of Differential Form)

At this stage, it is worth noting how our above choices deviate from constructions used in previous

works. It is clear that (3.2.1) and (3.2.3) are precisely a covariantisation of the Monge–Ampère

structure in [11,8], with (3.2.4) the corresponding almost (para-)complex structure. However, we

are free to make a choice of differential two-form above, which corresponds to a choice of almost

(para)-Hermitian metric on T �M . In particular, [11] fix the non-degenerate bilinear form

ĝαpX,Y q :� rpX  αq ^ pY  ϖq � pY  αq ^ pX  ϖqs ^ volM
1
2ϖ

2
(3.2.7)

for all X,Y P XpT �Mq, as opposed to (2.2.5). As discussed in [5, 26], the third differential two-

form may be defined by1
b
|f̂ |ĝαpĴ�,�q, as opposed to (3.2.6). Note also that the pullback of ĝα

via (3.2.2) is then simply the Hessian of ψ without vorticity as a conformal factor, in contrast

to (2.2.7), where the vorticity is made manifest.

3.3 Geometric Properties of Higher Dimensional Incompressible Fluid Flows

Having introduced the notion of k-plectic manifolds, we can now make precise the description of

higher-dimensional incompressible fluid flows. The following formulation should make it trans-

1Note that whilst we present these expressions in our notation, the literature only treats the Euclidean case.
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parent that our approach works in any dimension m ¡ 1, with appropriate choices of volume form

volM and sums over indices i � 1, . . . ,m. Our results shall be presented in a (predominantly)

dimension-free manner though, where needed, we may specify to the case m � 3 for clarity.

Let M be a smooth m-dimensional Riemannian manifold. We consider again the pair of

differential m-forms given by

ϖ :� ∇̊qi ^ �g̊dxi ,
α :� 1

2∇̊qi ^ ∇̊qj ^ �g̊pdxi ^ dxjq � 1
2

�
∆̊Bp� R̊ijqiqj

�loooooooooomoooooooooon
�: f̂

volM (3.3.1)

on T �M where now volM :�
?

detp̊gq
m! εi1,...imdxi1 ^ . . . ^ dxim . Note that these choices can be

understood as a covariantisation of results previously presented in [8, 11] in three dimensions.

Again, it can be verified that ϖ is non-degenerate and noting that

dp∇̊qiq � 1
2dx

l ^ dxkR̊klijqj � dxjΓ̊jik ^ ∇̊qk (3.3.2a)

and

d�g̊dxi � �g̊jkΓ̊jki volM (3.3.2b)

it is straightforward to verify that ϖ is closed. It then follows that ϖ defines an pm� 1q-plectic

structure on T �M . Additionally, the submanifold ι : L ãÑ T �M defined by ι�ϖ � 0 with ι

given by (3.2.2) with i � 1, 2, � � �m is an m-dimensional pm� 1q-Lagrangian submanifold of the

pm� 1q-plectic manifold pT �M,ϖq. Furthermore, it follows from (3.3.2a) and

d�g̊pdxi ^ dxjq � 2̊gklΓ̊kl
ri�g̊dxjs � 2̊gkriΓ̊kljs�g̊dxl (3.3.3a)

and

dxk ^ �g̊pdxi ^ dxjq � �2̊gkri�g̊dxjs (3.3.3b)

that α is closed. It is also non-degenerate and so, the pair pT �M,αq defines an pm � 1q-plectic

manifold. However, in general, while α is pm � 1q-plectic, its pullback via (3.2.2) may not

define an m-dimensional pm � 1q-Lagrangian submanifold. As discussed above, the conditions

ι�ϖ � 0 and ι�α � 0 are equivalent to the incompressibility condition (1.2.3b) and the pressure

constraint (1.2.3c), respectively. Note also that ϖ ^ ω � 0 and α ^ ω � 0 for ω � ∇̊qi ^ dxi

the standard symplectic structure on T �M and so, ϖ and α are Monge–Ampère forms for ω. In

contrast, the wedge product α^ϖ � 0 if and only if m � 3.

Next, we wish to treat the relation (3.2.4) in higher dimensions. To this end, we shall

specialise to the case m � 3 and use the results of [9]. In particular, we note that the there is

an isomorphism ϕ : Ω5pT �Mq Ñ XpT �Mq b Ω6pT �Mq that is induced by the natural exterior
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product pairing Ω1pT �MqbΩ5pT �Mq Ñ Ω6pT �Mq.1 Consequently, given a differential 3-form α

and a volume form vol on T �M , it is then possible to define the so-called Hitchin endomorphism

Ĵ α
vol : XpT �Mq Ñ XpT �Mq by

Ĵ α
volpXq vol :� ϕpα^X  αq . (3.3.4)

Now let vol � 1
3!ω

3, the Liouville volume form with respect to the standard symplectic form

ω on T �M and let ε denote the poly-vector field dual to the Liouville volume form, that is,

ε  1
3!ω

3 � 1. Using (3.3.4), we may then associate with the differential three-form α defined

in (3.3.1) the endomorphism

ĴX :� � 1

2

b
|f̂ |

ε pα^X  αq for all X P XpT �Mq (3.3.5)

under the assumption that f̂ does not vanish. It then follows that Ĵ is an almost complex

structure on T �M when f̂ ¡ 0 and an almost para-complex structure when f̂   0. Furthermore,

the differential two-form K̂ defined in (3.2.6), with now i running from one to three, together

with (3.3.5) satisfy K̂pĴX,Y q � �K̂pX, Ĵ Y q for all X,Y P XpT �Mq, hence K̂ is an almost

(para-)Hermitian form. Consequently, we can define an almost (para-)Hermitian metric ĝ on

T �M with respect to (3.3.5) by setting ĝpX,Y q :� K̂pX, Ĵ Y q for all X,Y P XpT �Mq. Explicitly,

ĝ � 1
2 f̂ g̊ijdx

i d dxj � 1
2 g̊
ij∇̊qi d ∇̊qj . (3.3.6)

In contrast to Remark 3.2.1, in three dimensions, this metric is essentially a covariantisation of a

bilinear form introduced in [15] (see also [8]), from which it follows that K̂ is of type p1, 1q with

respect to (3.3.5).

Noting that (3.3.6) is a direct generalisation of (2.2.5) from two to three dimensions, we return

to our arbitrary dimensional formulation and call metrics of this form, with i, j � 1, . . . ,m, a

Lychagin–Rubtsov metric on T �M . In view of our later applications, we provide an expression

for the curvature scalar of the metric (3.3.6). The following is derived in Section C.2.3 and holds

in any dimension:

R̂ � 1

f̂
R̊� 1

4f̂2
R̊ijk

lR̊ijkmqkqm � pm� 1q∆̂B log
�
|f̂ |

	
� g̊ij B2

BqiBqj log
�
|f̂ |

	

� 1

4f̂
pm� 1qpm� 2q̊gij

� B
Bxi � Γ̊ik

lql
B
Bqk



log

�
|f̂ |

	� B
Bxj � Γ̊jm

nqn
B
Bqm



log

�
|f̂ |

	

� 1

4
mpm� 3q̊gij BBqi log

�
|f̂ |

	 B
Bqj log

�
|f̂ |

	
,

(3.3.7)

1Explicitly, ϕ : Ω5pT�Mq Ñ XpT�Mq bΩ6pT�Mq is given by ϕpρqpλ,X1, . . . , X6q :� X1
 . . . X6

 pρ^ λq

for all ρ P Ω5pT�Mq, λ P Ω1pT�Mq, and X1, . . . , X6 P XpT�Mq.
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where ∆̂B is the Beltrami Laplacian for ĝ.

Finally, let us present a formula for the pullback of the metric (3.3.6) in arbitrary dimension,

which utilises the notation of fluid dynamics. Note first that pulling back f̂ via (3.2.2) and

applying the pressure equation (1.2.3c) (in the form (1.2.7)) yields

f :� ι�f̂ � �1
2Aj

iAi
j , (3.3.8)

where Aij � Aikg̊
kj and Aij is the velocity gradient tensor defined in (1.2.5). Additionally,

observe that the pullback of ∇̊qi via (3.2.2) is given by

ι�p∇̊qiq � ∇̊jvidxj � Aijdxj . (3.3.9)

It then follows that the pullback of (3.3.6) is given by

g � 1
2gijdx

i d dxj with gij :� g̊klAkiAlj � 1
2Ak

lAl
kg̊ij . (3.3.10)

We can demonstrate that for incompressible two-dimensional fluid flows, this is precisely equi-

valent to the pullback of (2.2.5) via a section dψ on open, contractible neighbourhoods.

Namely, (2.2.7) may be recovered from (3.3.10) by noting that Aij � ∇̊jvi and that for two-

dimensional incompressible flows on an open contractible neighbourhood U � M , the state-

ment (1.2.8) is simply

vi �
a
detp̊gqϵijBjψ . (3.3.11)

However, note that while in two dimensions we have directly related the signature of (2.2.7) to

the sign of (3.3.8), there is no such apparently simple relation in higher dimensions; in Section 3.4

we will present an explicit example demonstrating that the metric (3.3.10) does not even have

to be singular along the curves given by f � 0. While it is not yet fully understood why this is

the case, in the next chapter we shall demonstrate how this is also true of compressible flows in

two dimensions given by symmetry reduction.

3.3.1 Topology of Three-Dimensional Incompressible Fluid Flows

In two dimensions, we utilised the local Gauß–Bonnet theorem (2.2.14) in order to relate the

geometry of fluid flows, as described by the curvature scalar (2.2.13), to a topological invariant,

namely the Euler characteristic of a given compact region. In three dimensions (in-fact in any

odd number of dimensions), it quickly becomes apparent that this is not a suitable approach and

that we require alternative topological quantity.

Recall now the standard symplectic form ω and its associated tautological one-form θ :� qidxi

satisfying ω � dθ. Their respective pullbacks under (3.2.2) are ι�ω � dv � 1
2ζijdx

i ^ dxj and

ι�θ � v � vidxi and it should be noted that ι�ω vanishes if and only if the vorticity two
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form (1.2.4) is zero. It then follows from the distributive property of pullbacks over the wedge

product that

ι�pθ ^ dθq � viζ
i volM3 with ζi :� 1

2

a
detp̊g3qεijkζjk (3.3.12)

is the vorticity in three dimensions, derived from (1.2.4). Integrals of quantities of this form,

over a compact region U � M3, are referred to as helicity [27, 28]. Hence, in our context viζi

may be referred to as the helicity per volume.

Consider an inviscid, incompressible fluid, with kinematics described by the Euler equations,

on a compact region U �M3. Suppose also that U describes the volume contained inside some

closed orientable surface, which is moving with the fluid and has (continuous, outward) unit

normal n with components denoted ni. It is shown1 in [27] that, provided the distribution of

vorticity is local and continuous, with niζ
i � 0, then the integral of (3.3.12) is an invariant

of the Euler equations and the vorticity field within the volume is conserved. Furthermore, it

is shown in [29, 30] that for discrete vortex filaments, this quantity can be associated with the

topological invariants given by the Gauß linking number and Călugăreanu invariant of [31, 32].

Whitehead [33] also showed that helicities are isotopy invariants of their volume. Perhaps more

significantly, a recent work [34] has managed to demonstrate that, in ideal conditions, helicity-

type quantities can be reinterpreted as Abelian Chern–Simons actions and hence can be related

to the Jones polynomial.

Observe that, in addition to the interpretation of the pullbacks of (3.3.1) under (3.2.2) as

the incompressibility and pressure equations, in three dimensions we now have that the corres-

ponding pullback of the standard symplectic form encodes the helicity. Additionally, previous

work relating helicity to various topological invariants suggests that, as in two dimensions, we

can relate the topology of fluid flows to our geometric constructions.

3.4 Incompressible Fluids in Euclidean Space - Examples

For completeness, we now provide an example computation for a three-dimensional incompress-

ible fluid flow. To demonstrate the usefulness of our covariant formulation, we consider a flow

on flat background in cylindrical polar coordinates. Note that we present the curvatures of the

Lychagin–Rubtsov metric and its pullback, despite these having no natural interpretation via the

Gauß–Bonnet theorem in three dimensions. However, we shall wish to compare these curvatures

to those we shall obtain upon our return to three-dimensional examples at the end of Chapter 4,

where we shall address how coordinate symmetries of the underlying manifold can be used to pro-

duce a (potentially compressible) two-dimensional flow, with its own Lychagin–Rubtsov metric

and alternative diagnostics for vorticity and strain.

1See also [28] for discussion in the context of magneto-hydrodynamics.
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3.4.1 Hill’s Vortex

To set the stage, we consider flows on M � R2 �r2 S1 equipped with the metric

g̊ � dr b dr � dz b dz � r2dθ b dθ , (3.4.1)

where r P R�, z P R, and θ P r0, 2πq, inducing standard cylindrical coordinates. The non-

vanishing Christoffel symbols of g̊ are given by

Γ̊θθ
r � �r and Γ̊rθ

θ � Γ̊θr
θ � 1

r , (3.4.2)

from which it follows that (3.4.1) is flat and R̊ � 0. Therefore, we have that f̂ � f � 1
2∆̊Bp

for flows on M . Pulling back (3.3.1) by (3.2.2) yields the equations (1.2.3b) and (1.2.3c), which

simplify to

Brvr � Bzvz � 1
r2
Bθvθ � rvr � 0 , (3.4.3a)

and

1
2∆̊Bp � pBrvrqpBzvzq�pBrvzqpBzvrq�pvrr q2� 1

r4

�
v2θ � r

2Brpv2θq � rvθpBθvrq � pBθvθq2
�
, (3.4.3b)

respectively, in our coordinates. We may now fix components of velocity satisfying the above

pair of equations, in order to study specific flow regimes well suited to cylindrical coordinates.

We wish to showcase vortices of Hicks-Moffatt type [35, 27] - isolated, spherical regions of

local and continuous vorticity, placed in a uniform flow, parallel with the z axis. For an in-depth

review of such vortices, we direct the interested reader to [36]. We shall normalise the speed of the

uniform flow and the radius of the sphere to 1 for simplicity. Fix the notation σpr, zq � ?r2 � z2
and call points with σ2 º 1 the interior/exterior. The components of velocity for Hicks-Moffatt

vortices are then written as follows

vr � �1
rBzψ , vz � 1

rBrψ , and vθ,κ � 1
rκψ , (3.4.4)

where ψ � ψpr, zq and κ parametrises the swirl of the flow. Note that (3.4.3a) is trivially satisfied

by such a choice. It is important to observe that the helicity (3.3.12), is non-zero if and only

if the flow has non-zero swirl [37, 38], hence it is possible to have regions of vorticity in three

dimensions, which have vanishing helicity. Further, the function ψ (which we shall refer to as the

stream function for reasons revealed in Section 4.4.2) is prescribed on the exterior and interior

in turn, such that the piecewise function is continuous (in-fact, vanishing) on the boundary of

the sphere given by σ2 � 1 and (3.4.3b) is satisfied.

In particular, on the exterior of the sphere, we choose

ψextpr, zq :� 1
2r

2
�
1� 1

σ3

�
. (3.4.5a)
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such that the flow far from the sphere is uniform with unit speed directed along the z axis, with

some rotation in the θ direction, as dictated by κ. On the interior, we set

ψint,κpr, zq :� 3
2r

2

�
bpκq � cpκq

J 3
2
pκσq

pκσq 32

�
, (3.4.5b)

with

bpκq :�
J 3

2
pκq

κJ 5
2
pκq and cpκq :�

?
κ

J 5
2
pκq , (3.4.5c)

where Jnpxq is the n-th order Bessel function with argument x.1 Studying such examples for

arbitrary κ becomes cumbersome and somewhat unenlightening, so let us specify to the limiting

case when κ � 0 and the flow has vanishing helicity; this choice corresponds to Hill’s spherical

vortex [40]. Dropping the κ � 0 subscripts, the θ component of velocity, (3.4.4) then becomes

vθ � 0.

The exterior problem is largely trivial, so we shall only discuss it briefly here. Since the

vorticity of our flow is isolated on the interior, it follows that strain dominates everywhere on

the exterior and, as should be expected from previous discussions, f̂ is everywhere negative, ĝ

is everywhere Kleinian, with everywhere negative curvature scalar and no singularities on the

domain. There is, however, a coordinate singularity in g, along the line z � 0, corresponding to

where the exterior flow passes the equator of the sphere, but not to any sign change in f or ζij .

This may be due to the fact that ζij � 0 on the exterior, though more investigation would need

to be undertaken.

Turning to the interior solution for Hill’s vortex, the stream function (3.4.5b) simplifies to

ψpr, zq :� ψint,0pr, zq � 3
4r

2
�
r2 � z2 � 1

�
. (3.4.6)

Applying (3.4.4) then yields the remaining velocity components

vr � �3
2rz and vz � 3

2

�
2r2 � z2 � 1

�
. (3.4.7)

Imposing that (3.4.3b) is satisfied, we find that the Laplacian of pressure is given by

f � 1
2∆̊Bp � 9

4

�
4r2 � 3z2

�
(3.4.8)

and the curvature (3.3.7) of the Lychagin–Rubtsov metric (3.3.6) is given by

R̂ � 8
�
8r4 � 69r2z2 � 9z4

�
9r2 p4r2 � 3z2q3 . (3.4.9)

It follows that ĝ is Riemannian with positive scalar curvature where 4r2 ¡ 3z2 and Kleinian

with curvature of indefinite sign when 4r2   3z2. Further, along the contour f � 0, the metric

ĝ exhibits a curvature singularity, see Figure 3.4.3a.
1Such an explicit solution was found in the context of magneto-hydrodynamics by Prendergast [39]. In the

context of Navier–Stokes , solutions of this type are also referred to as Hill’s spherical vortex with swirl.
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(a) Contours for ψint,0 at constant θ. The
contours are closed and concentric, form-
ing toroidal vortex tubes when rotated
around the z axis.

(b) The Laplacian of pressure function f ,
which vanishes along 4r2 � 3z2, is positive
between these curves and negative outside
of them.

Figure 3.4.1: Contour plots of the stream function (3.4.6) (left) and Laplacian of pressure quant-

ity (3.4.8) (right) for the interior of Hill’s unit spherical vortex. Note that the region on which

f ¡ 0 contains closed streamlines of ψ with sufficiently large magnitude.

We now wish to evaluate the pullback of the Lychagin–Rubtsov metric via the velocity com-

ponents, using the velocity gradient tensor (1.2.5) which, for Hill’s vortex, is given by

Aij �

�
���
�3

2z �3
2z 0

6r 3z 0

0 0 �3
2r

2z

�
��
 . (3.4.10)

Plugging this into (3.3.10) yields that the pullback metric via (3.2.2) is given by

gij � 9

4

�
���
20r2 � 2z2 9rz 0

9rz 5r2 � z2 0

0 0 r2
�
4r2 � 2z2

�
�
��
 . (3.4.11)

The eigenvalues of this metric are given by

E� � 9
8

�
25r2 � z2 � 3σ

a
p25r2 � z2q

	
and E3 � 9

4r
2
�
4r2 � 2z2

�
(3.4.12)

and its curvature is given by

R � 8
�
10000r8 � 1880r6z2 � 2292r4z4 � 1229r2z6 � 85z8

�
9 p2r2 � z2q2 p100r2 � 71r2z2 � 2z4q2 . (3.4.13)

It follows that the metric (3.4.11) is Riemannian with positive scalar curvature when 2r2 �
z2 ¡ 0 and 100r4 � 71r2z2 � 2z4 ¡ 0 simultaneously, and singular when there is equality. The
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(a) Contours of E�. This eigen-
value is positive on the whole
domain and increases in mag-
nitude as z increases.

(b) Contours of E�, which van-
ishes along 100r4 � 71r2z2 �

2z4 � 0, and is positive between
the resulting lines.

(c) Contours of E3. This eigen-
value vanishes along 4r2 � 2z2,
is positive between these lines,
and negative outside of them.

Figure 3.4.2: Plots of the eigenvalues (3.4.12) of the pullback metric (3.4.11) for the interior

solution of Hill’s spherical vortex.

pullback metric is Kleinian elsewhere, with signature p�1,�1,�1q and negative scalar curvature

when 2r2� z2   0 and 100r4� 71r2z2� 2z4   0 simultaneously. In the region where 2r2� z2 ¡
0 and 100r4 � 71r2z2 � 2z4   0, the curvature has indeterminate sign and the metric is of

signature p�1,�1,�1q. Observe that, unlike in previous problems, neither of the singularities

occur precisely where f � 0, however the region where f ¡ 0 is still within that where (3.4.11)

is Riemannian. The only non-zero component of vorticity is given by

ζ12 � 15
4 r , (3.4.14)

which vanishes along the z-axis, which lies within the Kleinian region, again in-line with the

work of Larchevêque [4] and our observations in two dimensions.

3.5 Chapter Summary

In this chapter, we have introduced the language of k-plectic geometry and ℓ-Lagrangian sub-

manifolds. It was noted that the Monge–Ampère-type structure given by (3.3.1) corresponds to

the covariant, incompressible Navier–Stokes equations in arbitrary dimension and is equivalent

to (2.2.2) in two dimensions. We again recovers an almost (para-)complex structure (3.2.4),

almost (para-)Hermitian form (3.2.6), and Lychagin–Rubtsov metric (3.3.6). A formula (3.3.10)

for the pullback of the Lychagin–Rubtsov metric via (3.2.2) in arbitrary dimension was provided,

relating the geometry of Lagrangian submanifolds described by the velocity (co-)vector to the

velocity gradient tensor (1.2.5). A potential approach for relating topological invariants in three
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(a) Plot of the curvature R̂ of the metric
ĝ, which is singular along r � 0 and 4r2 �

3z2, where f � 0.

(b) Plot of the curvature R of the metric
g, which is singular along 4r2 � 2z2 and
100r4 � 71r2z2 � 2y4 � 0.

Figure 3.4.3: Contour plots of the curvatures (3.4.9) and (3.4.13) respectively.

dimensions to these geometric constructions was briefly discussed. We concluded by presenting

an example of a flow in three-dimensional Euclidean space, hence demonstrating that, while

signature change of the Lychagin–Rubtsov metric still coincides with sign change in f̂ for higher

dimensional flows, the signature of the pullback metric is no longer explicitly given by the sign

of f , in contrast to the two-dimensional case. In the next chapter we consider a class of three-

dimensional flows with symmetry and address the two-dimensional flow produced by reducing

with respect to such a symmetry.
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4
Dimensional Reductions

Earlier works [7, 11] considered elements of a class of solutions to the three-dimensional incom-

pressible Euler and Navier–Stokes equations, with Euclidean background metric, which take the

form [41]

p 9x1, 9x2, 9x3q :� �
v1px1, x2, tq, v2px1, x2, tq, x3γpx1, x2, tq �W px1, x2, tq

�
, (4.0.1)

for γ and W some functions, where the superposed dot refers to the derivative with respect to the

time t. Such flows are referred to as ‘two-and-a-half-dimensional’ flows and are a generalisation

of what is known as ‘columnar flow’ [42]. In particular, Burgers’ vortex [43] is one such flow in

R
3 (for which W � 0 and γ � γptq), treated in [11] in the following manner: Assume that R

acts on the phase space T �R3 via translation of x3 and q3, with infinitesimal generator described

by the Killing vector field B
Bx3 � γ B

Bq3 . Given that such an action preserves the Monge–Ampère

structure (3.3.1), for which the velocity components of Burgers’ vortex define a solution in the

sense of (3.2.2), there exists an equivalent two-dimensional Monge–Ampère equation and classical

solution, replicating the so-called Lundgren transformation [44]. By performing this reduction

via our geometric formulation, the resulting two-dimensional Monge–Ampère equation can then

be studied in the sense of Chapter 2.

In this chapter, we shall consider solutions of the form (4.0.1) with γ � 0 and W �
W px1, x2, tq in more detail, as well as extending the treatment to flows on an arbitrary Rieman-

nian manifold. That is, we consider the case when the underlying three-dimensional manifold

M exhibits some symmetry in one particular coordinate x3, along which we reduce. We will find

that the three-dimensional, covariant, incompressible Navier–Stokes equations produce ‘adapted’

flow equations in two dimensions. While we drop the parameter time t for brevity, all functions

and constants will be interpreted as being ‘at fixed t’ and hence are allowed to vary in time.

35
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4.1 Setting for Reduction

We wish to consider flows on a three-dimensional background manifold M3 of a specific form,

such that reductions in one coordinate exist. In particular, let M3 be a warped-product of

a two-dimensional manifold M2 with metric g̊2, and a one-dimensional manifold N with local

coordinates x3. Then, there exists a metric on M3 with the following form

g̊3 � g̊2 � e2φ dx3 b dx3 , (4.1.1)

where we refer to φ P C8pM2q as the warping factor. For the remainder of this chapter, we

consider lower case indices i, j, . . . � 1, 2 so, for example, g̊2 � 1
2 g̊ijdx

i d dxj in components.

Observe that the only non-vanishing Christoffel symbols for g̊3 are Γ̊33
i � e2φg̊ijBjφ, Γ̊i33 � Biφ

and the Christoffel symbols Γ̊ij
k for g̊2.

Next, consider the differential forms (3.3.1) on Mm for m � 2, 3 and denote these by ϖm

and αm respectively. We shall use similar notation for other quantities occurring in both M3

and M2. Then, under the assumption that p P C8pM2q, some algebra reveals that

ϖ3 � eφϖ2 ^ dx3 � e�φ volM2 ^ ∇̊q3 ,

α3 � eφpα2 � ĥ�volM2q ^ dx3 � e�φ pϖ2 � q3dx3 ^ �g̊2dφq ^ ∇̊q3 ,
(4.1.2a)

with

ĥ� :� 1
2 r∇̊iφBip�

�
∇̊i∇̊jφ� ∇̊iφ∇̊jφ

�
qiqj � e�2φp∆̊Bφ� ∇̊iφBiφqq23

�
, (4.1.2b)

where all differential operators in ĥ� are with respect to the metric g̊2. Unless explicitly labelled,

this shall hold true for all formulae in the remainder of this chapter. Furthermore, we obtain

ϖ1
2 :� Bx3  ϖ3

� eφ
�
ϖ2 � qi∇̊iφ volM2

�
,

α12 :� Bx3  α3

� eφ
�
α2 �

�
ĥ� � e�2φ∇̊iφBiφ q23

�
volM2 � qi∇̊iφϖ2

�� e�φq3dq3 ^ �g̊2dφ .

(4.1.3)

A short calculation then shows that both ϖ1
2 and α12 are closed. In fact, using (3.3.2b), we also

have that

ϖ1
2 � dp�g̊2eφqidxiq . (4.1.4)

It follows also from (4.1.3) and Cartan’s magic formula for Lie derivatives that

LBx3ϖ3 � 0 � LBx3α3 , (4.1.5)

hence the actions of Lie groups with infinitesimal generator B
Bx3 preserve our Monge–Ampère

structure (4.1.2). This suggests that, for flows on M3 with metric (4.1.1) and the aforementioned



4.2 Symplectic Reduction 37

assumptions, it may be possible to perform a dimensional reduction along the direction x3.

Crucially, if the Lie algebra of our symmetry is generated by B
Bx3 only (and is hence described

by R), the corresponding Lie group G must be one-dimensional and hence isomorphic to either

R or S1. In the subsequent two sections, we present two different approaches to this reduction,

using symplectic and 2-plectic geometry in turn.

Remark 4.1.1 (Almost (Para-)Complex Forms and Dimensional Reductions)

Such reductions also enable us to make the relationship between (3.2.5) and (3.3.5) a bit more

explicit. Let Ĵm denote the almost (para-)complex form on XpT �Mmq and ωm be the standard

symplectic structure. In addition, we let εm be the poly-vector field dual to Liouville volume form

on T �Mm with respect to ωm. As ω2 ^ ω2 � ϖ2 ^ ϖ2, ϵ2 is also dual to the Liouville volume

form of T �M2 with respect to ϖ2. Also, let M3 be a warped-product manifold with metric (4.1.1)

as above and consider the special case when φ � 0. Then M3 �M2 �N , with the metric

g̊3 � g̊2 � dx3 b dx3 . (4.1.6)

Assuming that p P C8pM2q, the formulae (4.1.2) simplify to

ϖ3 � ϖ2 ^ dx3 � volM2 ^ dq3 and α3 � α2 ^ dx3 �ϖ2 ^ dq3 . (4.1.7)

The decomposition of α3 and the effectiveness α2^ϖ2 � 0 imply that α3^pX α3q � �2pϖ2^X 
α2q dq3^dx3 for all X P XpT �M2q.1 Since ε3 � ε2^ B

Bx3^ B
Bq3 , this then yields ε3 pα3^X α3q �

�2ε2  pϖ2 ^X  α2q. Consequently, combining this result with (3.3.5) and (3.2.5), we finally

obtain

Ĵ3|M2 � Ĵ2 . (4.1.8)

4.2 Symplectic Reduction

We begin this section by recalling the Marsden–Weinstein reduction process [45,46], a well known

tool in symplectic geometry, used to reduce spaces with symmetries. Concretely, this reduction

process can be summarised as follows:

Theorem 4.2.1 (Marsden–Weinstein Reduction Process)

Let pN,ωq be a symplectic manifold. Suppose that G is a Lie group acting by symplectomorphisms

on pN,ωq. Let µ : N Ñ g� be the moment map for this action with g the Lie algebra of G.

Furthermore, let c P g� be a regular value of µ and Gc � G the (coadjoint) stabiliser group

1Note that the horizontal lift of X to T�M3 is trivial because of the assumed form of the metric g̊3.
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of c. We assume that Gc acts freely and properly on µ�1ptcuq. Set Nc :� µ�1ptcuq{Gc, with

p : µ�1ptcuq Ñ Nc the natural projection, and consider,

µ�1ptcuq N

Nc

i

p (4.2.1)

Then, there exists a unique symplectic structure ωc on Nc such that p�ωc � i�ω.

Consider now the following ‘twisted’ symplectic form on T �M

ω3 :� dqi ^ dxi � dpλq3q ^ dx3 , (4.2.2)

where λ P C8pM2q is non-vanishing, and again let B
Bx3 be the infinitesimal generator of the Lie

algebra corresponding to G. Evidently Bx3 ω � dpλq3q and ω3 is closed. Hence, L B

Bx3
ω3 � 0 and

B
Bx3 acts by symplectomorphisms on pT �M,ω3q. Further, as Bx3  ω is exact, we can define the

moment map on T �M by µpx, qq � λq3 (up to shifts by a constant), from which it follows that

µ�1ptcuq � tpx, qq | q3 � c
λu for any regular value c P R. Consequently, µ�1ptcuq{Gc is locally

given by pxi, x3, qi, q3q � pxi, const, qi, q3 � v3pxiqq. Furthermore, by virtue of Theorem 4.2.1, we

obtain the symplectic form ωc :� dqi ^ dxi on µ�1ptcuq{Gc � T �M2 satisfying p�ωc � i�ω3, as

well as two closed differential two-forms given by

ϖ̃2 :� eφ
�
ϖ2 � qi∇̊iφ volM2

�
,

α̃2 :� eφ
 
α2 �

�
ĥ� � e�2φ

�
∇̊iφBiφ q23 � q3∇̊iφBiq3

��
volM2 � qi∇̊iφϖ2

(
,

(4.2.3)

which are simply those from (4.1.3), with q3 understood as a function of x1 and x2.

Upon requiring the vanishing of the pullback of ϖ̃2 and α̃2 along (3.2.2), together with the

relabelling the function q3 by v3, we obtain

∇̊iv
i � �viBiφ ,

∆̊Bp� ∇̊iv
j∇̊jv

i � 1
2 |v|2R̊ � �g̊ijBiφBjp� vivj∇̊iBjφ

� e�2φ
��
∆̊Bφ� g̊ijBiφBjφ

�
v23 � 2v3g̊

ijBiφBjv3
�
.

(4.2.4)

These are precisely the incompressibility equation (1.2.3b) and the pressure equation (1.2.3c)

when adapted to the warped product metric (4.1.1) and under the assumption that p is inde-

pendent of x3. Additionally, the first equation of (4.2.4) can be rewritten as ∇̊ipeφviq � 0, hence

by the Poincaré lemma, any solution is locally of the form

vi � �
a
detp̊g2q e�φεij g̊jkBkψ , (4.2.5)

for some ψ P C8pM2q. That is, we have a modified compressibility equation and modified

stream function in two dimensions post reduction. Evidently, when φ � 0, we find that v3 is
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unconstrained by (4.2.4), x3 coordinatises R, and we obtain, from our reduced flow, the standard

situation of an incompressible fluid in two dimensions, as discussed in Section 2.2.

Next, let X be a vector field on µ�1ptcuq{Gc � T �M2 and consider its horizontal lift X̃ to

T �M3 using the Levi-Civita connection for the metric (4.1.1),

X̃ :� X �X  dxiΓ̊i33q3
B
Bq3 � X �X  dφ q3

B
Bq3 . (4.2.6)

Noting that X̃ ∇̊q3 � 0 andϖ2^pα2�ĥ� volM2q � 0, we obtain from (4.1.2) that α3^pX̃ α3q �
�2ϖ2 ^X  pα2 � ĥ� volM2q ^ ∇̊q3 ^ dx3. Consequently, the endomorphism (3.3.5) becomes

Ĵ3X̃ � 1b
|f̂2 � ĥ�|

ε2  
�
ϖ2 ^X  

�
α2 � ĥ� volM2

��
, (4.2.7)

where ε2 is the dual to the Liouville volume form on T �M2; see also Remark 4.1.1. Hence, we

obtain an endomorphism Ĵ2 on µ�1ptcuq{Gc, that is precisely of the form (3.2.5) for the Monge–

Ampère structure
�
ϖ2, α2 � ĥ� volM2

�
.1 Note that α2 � ĥ� volM2 is simply α2 with f̂2 replaced

by f̂2 � ĥ�. Note also that whilst ϖ2 is closed, α2 � ĥ� volM2 is not. Mirroring (3.2.6) we set

K̂2 :� sgnpf̂2 � ĥ�q
b
|f̂2 � ĥ�| ∇̊qi ^ dxi . (4.2.8)

Then, as before, K̂2pĴ2X,Y q � �K̂2pX, Ĵ2Y q for all vector fields X and Y on µ�1ptcuq{Gc so

that ĝ2pX,Y q :� K̂2pX, Ĵ2Y q is an almost (para-)Hermitian metric on µ�1ptcuq{Gc. Explicitly,

ĝ2 � 1
2pf̂2 � ĥ�q̊gijdxi d dxj � 1

2 g̊
ij∇̊qi d ∇̊qj . (4.2.9)

Let us close this section by stating the pullback of the metric (4.2.9) along

ι : xi ÞÑ pxi, qiq :� �
xi,�

a
detp̊g2q e�φεij g̊jkBkψ

�
, (4.2.10)

given by combining (3.2.2) and (4.2.5):

g2 � 1
2

�
∆̊Bψ∇̊iBjψ � Tij

�
e�2φdxi d dxj (4.2.11a)

with

Tij :� g̊ij
 
∇̊lφ Blψ

�
∇̊kφ Bkψ � ∆̊Bψ

�� �
∇̊kφ Bkφ

��
∇̊lψ Blψ

�
� ∇̊kφ

�
∇̊lψ ∇̊kBlψ � v3

�Bkv3 � v3Bkφ��(
� Biφ Bjφ

�
∇̊kψ Bkψ

�� ∇̊kψ
�Biφ ∇̊jBkψ � Bjφ ∇̊iBkψ

�
.

(4.2.11b)

Evidently, Tij � 0 when φ � 0, and we recovers the metric (2.2.7). It should be noted, however,

that when φ � 0, the correspondence between the signature of g2 and the sign of the pullback

of pf̂2� ĥ�q via (4.2.10) is not direct, as we shall see in Section 4.4. This observation echoes the

discussion following (3.3.11) for incompressible flows in dimension higher than two.

1Here, ĥ� is understood as a function of x1, x2, q1, and q2 only, since in µ�1ptcuq{Gc, q3 � q3px
1, x2q.
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Remark 4.2.2 (Non-zero γ)

It should be clear at this stage that the computations in this chapter may be extended to cases

where γ � 0 and the symmetry B
Bx3 �γ B

Bq3 lies in XpT �Mq. In particular, given some γ � γpx, yq,
it is necessary (by exactness of dµ) for us to be able to choose non-vanishing λ P C8pM2q such

that γλ � d is constant in x1 and x2. It then follows that the third component of the velocity

must be of the form v3 � 1
λpdx3 � cq for c, d P R. For d � 0, we can set d � 1 without loss of

generality by scaling either γ or λ, in which case the third velocity component simplifies further

to v3 � γpx3� c̃q, for c̃ P R arbitrary, while setting d � 0 corresponds γ � 0, as discussed above.

Setting c � 0 corresponds to the Burgers’ type reduction considered in [11]. Hence, our reduction

approach provides an extension of the Lundgren transformation to flows of the form (4.0.1),

which satisfy either of the additional constraints W px1, x2q � c̃γpx1, x2q or γ � 0.

4.3 k-Plectic Reduction

We saw in Chapter 3 that k-plectic geometry is an appropriate language in which to formulate

higher dimensional flows. It may then be reasonably assumed that a k-plectic generalisation

of Theorem 4.2.1 would be an appropriate tool when considering symmetry reductions. Fortu-

nately for us, [47] have recently produced such a generalisation:

Theorem 4.3.1

Let pN,ϖq be a k-plectic manifold. Suppose that G is a Lie group acting by k-plectomorphisms

on pN,ϖq. Let µ : N Ñ �k�1 T �N b g� be the moment map for this action with g the Lie

algebra of G. Furthermore, let c P Ωk�1pN, g�q be closed and define

µ�1ptcuq :� tx P N |µpxq � cxu,
Gc :�  

g P G �� g�1
� X1

 . . . g�1
� Xk�1

 Ad�gcg�1x � X1
 . . . Xk�1

 cx
for all x P N and for all X1, . . . , Xk�1 P TxN

(
.

(4.3.1)

Suppose that µ�1ptcuq is a submanifold of N with (smooth) embedding i : µ�1ptcuq ãÑ N and that

Gc acts freely and properly on µ�1ptcuq. Set Nc :� µ�1ptcuq{Gc, again with natural projection

p : µ�1ptcuq Ñ Nc and consider,

µ�1ptcuq N

Nc

i

p (4.3.2)

Then, there exists a unique closed differential form ϖc P Ωk�1pNcq on Nc such that p�ϖc � i�ϖ.

Evidently, for k � 1 this result reduces to Theorem 4.2.1. It is important to stress that for

k ¡ 1, the differential form ϖc P Ωk�1pMcq might be degenerate.
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Consider now the 2-plectic reduction of the Monge–Ampère structure (3.3.1) via The-

orem 4.3.1, recalling (4.1.5), which implies Lie groups corresponding to the infinitesimal gen-

erator B
Bx3 act by k-plectomorphism on the 2-plectic manifold pT �M,ϖ3, α3q. Further, by virtue

of exactness (4.1.4), the moment map may be defined (up to a shift by an exact form) by

µpx, qq � �g̊2eφqidxi . (4.3.3)

For ψ P C8pM2q, µ�1pt�dψuq is non-empty and given by

µ�1pt�dψuq �
!
px, qq

��� qi � �adetp̊g2q e�φεij g̊jkBkψ
)
. (4.3.4)

Consequently, the quotient µ�1pt�dψuq{G�dψ is locally given by pxi, x3, qi, q3q ��
xi, const,�

a
detp̊g2q e�φεij g̊jkBkψ, q3

�
. Furthermore, there exists closed differential form

ϖ�dψ :� e�φvolM2 ^ dq3 on µ�1pt�dψuq{G�dψ satisfying p�ϖ�dψ � i�ϖ3. Returning to (4.1.3),

while the pullback of ϖ1
2 to µ�1pt�dψuq vanishes identically, the equation p�α�dψ � i�α12 is

satisfied by the two-form

α�dψ :� eφ
�
det

�
∇̊iqj

	
� �

f̂2� ĥ�
�����

qi��
?

detp̊g2q e�φεij g̊jkBkψ
volM2 � e�φq3dq3^�g̊2dφ (4.3.5)

on µ�1pt�dψuq{G�dψ, where ĥ� is as defined in (4.1.2b). Finally, requiring that the pullback of

α�dψ along

ι : xi ÞÑ pxi, q3q :� pxi, v3pxiqq , (4.3.6)

vanishes, the second equation of (4.2.4), with vi given by vi � �
a
detp̊g2q e�φεij g̊jkBkψ, is

obtained, trivially satisfying the first equation from (4.2.4), as discussed around (4.2.5). Observe

that, in contrast to the symplectic reduction where Poincaré’s lemma is required, the 2-plectic

reduction of the Monge–Ampère structure directly yields a two-dimensional flow (which may not

be incompressible) in terms of a stream function ψ, with the trade off that the metric (4.2.9)

is not acquired. As a result, the k-plectic reduction is a more elegant, compact tool, should a

description of the reduced kinematics be all that is required.

4.4 Reducible Incompressible Fluids - Examples

In this section we provide a pair of examples of flows on which one may apply symplectic and

2-plectic reductions - one with the symmetry Lie group given by R and the other with Lie group

given by S1.

4.4.1 Arnold–Beltrami–Childress (ABC) Flows

Let us consider flows on M3 :� R3 equipped with the standard Euclidean metric

g̊3 :� g̊2 � dz b dz with g̊2 :� dxb dx� dy b dy , (4.4.1)
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which corresponds to (4.1.1) with φ � 0. Note also that ĥ� � 0. In this case, the infinitesimal

generator B
Bx3 � B

Bz corresponds to the choice G � R acting by translation in z. Our sym-

plectic reduction therefore yields an incompressible fluid flow in two dimensions, on Euclidean

background. In summary, the equations (4.2.3) reduce to ϖ̃2 � ϖ2, and α̃2 � α2, with the

incompressibility and pressure equations (4.2.4) respectively given by

Bxvx � Byvy � 0 (4.4.2a)

and

∆p � 2
�BxvxByvy � BxvyByvx� with ∆ :� B2x � B2y , (4.4.2b)

where vx and vy are functions of x and y only.

Additionally, performing the 2-plectic reduction, or equivalently applying Poincaré lemma

to (4.4.2a), yields the velocity components vx and vy

qx :� vx � �Byψ and qy :� vy � Bxψ , (4.4.3)

in terms of a stream function ψ � ψpx, yq. The differential form corresponding to (4.3.5) is given

by

α�dψ � �B2xψ B2yψ � pBxByψq2 � 1
2∆p

�
dx^ dy , (4.4.4)

which is unchanged when pulled back along px, yq ÞÑ px, y, qzq :� px, y, vzpx, yqq. Hence, imposing

a vanishing pullback condition is equivalent to the Monge–Ampère equation

1
2∆p � B2xψ B2yψ � pBxByψq2 , (4.4.5)

which is, in turn, precisely (4.4.2b) with vx, vy evaluated as per (4.4.3). Hence, upon making the

free choice of a pair of z-independent functions ψ and vz, an incompressible fluid flow in R3 that

reduces to an incompressible flow on the px, yq-plane is recovered.

Making the choice

vzpx, yq � ψpx, yq :� A cospyq �B sinpxq , (4.4.6)

for A,B P R some constants (see Figure 4.4.1a), and computing (4.4.3), we recover the velocity

field for the integrable case of Arnold–Beltrami–Childress (ABC) flow [48],

pvx, vy, vzq � p 9x, 9y, 9zq � �
A sinpyq, B cospxq, A cospyq �B sinpxq� . (4.4.7)

Following [48], upon taking the quotient of vx and vy, this system integrates to vz � A cospyq �
B sinpxq � const. Furthermore, (4.4.5) becomes

f̂2 � ĥ� � 1
2∆p � AB sinpxq cospyq , (4.4.8)
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(a) Streamlines for ψ. Note ψ � 0 corres-
ponds to vanishing vorticity and defines a
shear layer between two homoclinic orbits.

(b) Contour plot for f̂2 � ĥ�. Note the
domain is partitioned into squares of side
length π, across which ∆p alternates sign.

Figure 4.4.1: Plots of the iso-lines of the stream function (4.4.6) and reduced Laplacian of

pressure (4.4.8) for Arnold–Beltrami–Childress flows with parameters A � 1.5 and B � 1.

as displayed in Figure 4.4.1b. Since M2 � R2 and ĥ� � 0, it follows that the metric (4.2.9) on

the reduced phase space µ�1ptcuq{Gc � T �R2 is precisely (2.3.2). Hence, we may follow exactly

the treatment from Section 2.3 and the curvature scalar R̂2 for the metric (4.2.9) follows directly

from (2.3.3),

R̂2 � sin2pxq � cos2pyq
AB sin3pxq cos3pyq , (4.4.9)

and, as in previous examples, for f̂2 » 0 the metric ĝ2 is Riemannian/Kleinian with posit-

ive/negative scalar curvature. Again, when f̂2 � 0, both the metric and the curvature scalar are

singular.

In turn, the pullback metric (4.2.11), with vx and vy as given in (4.4.7), is

pg2 ijq � rA cospyq �B sinpxqs
�
B sinpxq 0

0 A cospyq

�
, (4.4.10)

where the vorticity in two dimensions is ζ :� ∆ψ � �ψ � �A cospyq � B sinpxq. This metric is

singular when f̂2 � 0, with a further singularity when A cospyq � B sinpxq � 0, precisely along

the shear layer featuring in Figure 4.4.1a corresponding to vorticity vanishing. The curvature

scalar R2 associated with (4.4.10) is then

R2 �
B sinpxq� sin2pxq � 3 cos2pyq��A cospyq� cos2pyq � 3 sin2pxq�

2 sin2pxq cos2pyqrB sinpxq �A cospyqs3 . (4.4.11)

Observe that the lines x � nπ and y � �
n � 1

2

�
π for all n P Z, along which f2 � 0, are

singularities of both the metric g and its curvature R, as was the case for the metric (4.2.9).
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(a) Contours of the curvature scalar R̂2.
Note the signs of R̂2 and f̂2 agree and R̂2

blows up as f̂2 tends to zero.

(b) Contours of R2. Note f̂2 is not a dia-
gnostic for the sign of R2, but curvature
singularities still occur when f̂2 � 0.

Figure 4.4.2: Contour plots of the curvatures (4.4.9) and (4.4.11) respectively, for the integrable

ABC flow with parameters A � 1.5 and B � 1. The ellipse highlighted on the left is the domain

in M bounded by the closed streamline ψ � �27
16 , contained in a region on which the metrics ĝ2

and g are Riemannian, and f̂2 ¡ 0, as discussed around (2.2.16).

Additionally, the presence of A cospyq � B sinpxq in the denominator illustrates that the shear

layer is in fact a curvature singularity. See Figure 4.4.2b. This curvature singularity arises due

to the vanishing vorticity and is otherwise unseen by the pressure criterion. Furthermore, g2 is

globally degenerate when A � 0 or B � 0 independently, in addition to when both A and B

vanish (in which case both the vorticity and the Hessian part of the metric vanish). Whilst the

latter corresponds to when ψ � 0 and there is no flow, the former two choices seem to correspond

to cases where the flow is trivial as a result of further symmetry: let B � 0 (analogously for

A � 0), such that the stream function (4.4.6) depends only on y (respectively x) and the flow

velocity (4.4.7) has only two non-zero components, which in turn depend only on y (respectively

x). It follows that the streamlines are simply y � constant (analogously x � constant) and (as

we may still reduce along the z-axis), we have one-dimensional flow in the px, yq-plane. Recall

that we saw similar behaviour in Section 2.3.2 when global degeneracy occurred.

4.4.2 Hill’s Vortex Revisited

Let us return to considering flows on background manifold given by M � R2 �r2 S1 and recall

that the metric on M given by (3.4.1) induces standard cylindrical coordinates, where r P R�,

z P R, and θ P r0, 2πq. In this case, the infinitesimal generator B
Bx3 � B

Bθ corresponds to teh

choice G � S1 acting by translation in θ, modulo 2π. Then, assuming the pressure is given by

p � ppr, zq, we have φ � logprq and ĥ� � 1
2rBrp in (4.1.2). Hence, the differential forms (4.2.3)
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(a) Contours of the eigenvalue E�. In
addition to the shear layers, note that
E� � 0 on the vertical x � π.

(b) Contour plot for the eigenvalue E�.
In addition to the shear layers, E� also
vanishes along y � π

2 and y � 3π
2 .

Figure 4.4.3: Plots of the eigenvalues of the pullback metric g2 � diagpE�, E�q from (4.4.10),

for the ABC flow with parameters A � 1.5 and B � 1. Note that g2 remains Kleinian on either

side of the shear layers, on which vorticity changes sign, as the two eigenvalues swap signs.

reduce to
ϖ̃2 � r

�
ϖ2 � 1

r qr dr ^ dz
�
,

α̃2 � r
 
α2 �

�
1
2rBrp� 1

r2

�
1
r2
q2θ � 1

r qθBrqθ
��

dr ^ dz � 1
r qrϖ2

(
.

(4.4.12)

Furthermore, the requirement of the vanishing of the pullbacks of ϖ̃2 and α̃2 under (3.2.2) become

1
rBrprvrq � Bzvz � 0 , (4.4.13a)

and
1
rBrprBrpq � B2zp � 2

�BrvrBzvz � BrvzBzvr � 1
r2
v2r � 1

r4

�
v2θ � r

2Brv2θ
��
, (4.4.13b)

which are the equations (4.2.4) for the metric (3.4.1), with vθ � vθpr, zq arbitrary. Evidently

equations (4.4.13) are precisely (3.4.3), under the assumption that the velocity and pressure are

θ-independent; in particular, note that the left hand side of (4.4.13a) is simply the divergence

of such a v and the left hand side (4.4.13b) is the Laplacian of p � ppr, zq, both expressed in

cylindrical coordinates.

Turning to the 2-plectic reduction, note that the moment map (4.3.3) can be taken as

µpx, qq � rqrdz � rqzdr , (4.4.14)

from which it follows that, locally on µ�1pt�dψuq{G�dψ, must have

qr :� vr � �1
rBzψ and qz :� vz � 1

rBrψ , (4.4.15)
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which can be interpreted as expressions for the velocity components in the r and z directions, in

terms of a stream function ψ � ψpr, zq in two dimensions. In fact, imposing that the pullback of

the closed differential form (4.3.5) along pr, zq ÞÑ pr, z, qθq :� pr, z, vθpr, zqq vanishes, we find

1
2

�
1
rBrprBrpq � B2zp

� � 1
r2

�B2rψB2zψ � pBrBzψq2�� 1
r4
pBzψq2 ,

� 1
r3

�BzψBrBzψ � BrψB2zψ�� 1

r4
�
v2θ �

r

2
Brv2θ

� (4.4.16)

that is, (4.4.13b) with vr and vz given in terms of ψ as in (4.4.15). Observe that there is freedom

to choose any θ-independent ψ and vθ, provided they satisfy (4.4.16). Further, the adapted

incompressibility equation (4.4.13a) is trivially satisfied for any such choices, given (4.4.15).

In what follows, we fix of ψ and vθ corresponding to the interior of Hill’s spherical vortex, as

in Section 3.4.1. Namely, we set vθ � 0 and restate the stream function:

ψpr, zq :� 3
4r

2
�
r2 � z2 � 1

�
. (4.4.17)

Again, the remaining velocity components are given by (3.4.7). Note that these components

being of the form (3.4.4) can now be seen as an automatic consequence of the symmetry, as

opposed to being a prescription like they were in our previous analysis. Following from (4.4.16)

the Laplacian of pressure is given by1

f̂2 � ĥ� :� 1
2

�B2rp� B2zp� 1
rBrp

� � 9
4

�
4r2 � 3z2

�
, (4.4.18)

which is precisely the function (3.4.8) from our three dimensional analysis (See also Figure 3.4.1b).

The metric (4.2.9) then takes the form

pĝijq � diag
��
f̂2 � ĥ�

	
δij , δ

ij
�

(4.4.19)

and R̂2 is given by (2.3.3), with f replaced by f̂2 � ĥ�. Namely

R̂2 �
56
�
4r2 � 3z2

�
9
�
4r2 � 3z2

�3 . (4.4.20)

See Figure 4.4.4a. Note that when 4r2 ¡ 3z2, coinciding with f̂2�ĥ� ¡ 0, (4.4.19) is Riemannian

and the curvature scalar is positive. Similarly, the metric is Kleinian and the curvature scalar

negative when f̂2 � ĥ�   0 and 4r2   3z2. Furthermore, the metric is singular when 4r2 � 3z2,

that is, when f̂2 � ĥ� � 0 and it is clear that this singularity is also one for the curvature.

This mostly coincides with what we saw in our genuine three-dimensional analysis Section 3.4.1,

however the sign of the curvature no-longer varies on the Kleinian region.

1Note here that f̂2� ĥ� has no dependence on qi, qθ, or θ itself, hence is unchanged under the pullback (3.2.2).
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(a) Plot of R̃2. The curvature is singular
along 4r2 � 3z2 and is negative at the
front and back of the sphere (with respect
to background flow in the z direction).

(b) Plot of R2. The curvature is is singular
along 100r4 � 71r2z2 � 2z4, in-line with
where E� � 0 and hence where the metric
g2 is degenerate.

Figure 4.4.4: Respective contour plots of the curvature scalars (4.4.20) and (4.4.22) for the

interior of Hill’s vortex. Note how both curvatures decrease in magnitude towards the boundary

of the sphere.

Furthermore, the pullback metric (4.2.11) becomes

pg2 ijq � 9

4

�
20r2 � 2z2 9rz

9rz 5r2 � z2

�
, (4.4.21)

which is precisely the top left 2 � 2 block from the metric (3.4.11). Hence, the eigenvalues

of (4.4.21) are given by E� from (3.4.12), see also Figure 3.4.2. Note that as E� is non-

negative and vanishes only at the origin, the signature of (4.4.21) is dictated precisely by the

sign of E�. Hence, g2 is Riemannian precisely when 100r4 � 71r2z2 � 2z2 ¡ 0, Kleinian when

100r4 � 71r2z2 � 2z4   0, and singular where there is equality. This agrees with our earlier

observations around (3.4.11), however the singularity 2r2 � z2 � 0, across which the Kleinian

signature changes in three dimensions, does not feature. The curvature scalar R2 associated

with (4.4.21) is then given by

R2 �
28
�
50r4 � z4�

9
�
100r4 � 71r2z2 � 2z4

�2 . (4.4.22)

Observe that R2 is everywhere positive and is singular precisely where E� vanishes, that is,

where the metric g2 is singular. Unlike in the genuine three-dimensional computation, the sign

of the curvature remains positive on the whole domain here. Additionally, observe that the

region on which f̂2 � ĥ� ¡ 0 still falls within the Riemannian region with respect to (4.4.21). It

therefore appears that the reduced flow in two dimensions captures all of the apparently essential
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information from the three-dimensional computation, with respect to changes in the dominance

of vorticity and strain, the sign of the Laplacian of pressure type quantities, and when the

Lychagin–Rubtsov metric and its pullback are Riemannian.

4.5 Chapter Summary

In this chapter, we considered a large subclass of incompressible two-and-a-half-dimensional

flows (4.0.1) in three dimensions, whose symmetry allows them to be reduced to a two-

dimensional Navier–Stokes flow. Using the symplectic and 2-plectic Marsden–Weinstein reduc-

tion processes, we set up a scheme for reductions via one-dimensional Lie groups, extending the

results of [44] to flows more general than those of Burgers’ type. As in earlier chapters, an almost

(para-)complex structure (4.2.7), almost (para-)Hermitian form (4.2.8), and a Lychagin–Rubtsov

type metric (4.2.9) were induced on the reduced manifold. We demonstrated via formulæ and

examples that the resulting two-dimensional flows are only incompressible in special cases and

noted that, when they are not incompressible, the sign of our diagnostic function ι�pf̂2 � ĥ�q,
with ι given by (4.2.10), does not in general coincide precisely with the signature of the pullback

of the Lychagin–Rubtsov metric on the reduced space (4.2.11).
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Conclusions and Outlook

5.1 Report Summary

In this report we provided a partial treatment of the covariant, incompressible Navier–Stokes

equations on an m-dimensional Riemannian background, through the lens of Monge–Ampère

geometry. In particular, we demonstrated that the Navier–Stokes equations are encoded in the

Monge–Ampère type structure (3.3.1) and that classical solutions of the corresponding Monge–

Ampère type equation are given by a class of Lagrangian submanifolds of the cotangent bundle,

with respect to said structure. It was also noted that the Laplacian of pressure could be given

in terms of the vorticity and strain of the flow, as well as the Ricci tensor of the underlying

manifold.

Specifying to two dimensions, we demonstrated that (1.2.3c) is a genuine Monge–Ampère

equation for a stream function onM , with Monge–Ampère structures given by (2.2.2) and (3.3.1).

Furthermore, it was shown that the Lychagin–Rubtsov metric (2.2.5) on T �M is almost (para-

)Hermitian and that its pullback (2.2.7) via local sections dψ : U �M Ñ T �M (or equivalently

via (3.2.2)) provides the following generalisation of Weiss’s criterion to incompressible flows on

two-dimensional Riemannian manifolds:

The vorticity term in (1.2.7) dominates precisely when f ¡ 0, the Monge–Ampère equation is

of elliptic type, and the pullback of the Lychagin–Rubtsov metric is Riemannian. Similarly,

the strain term dominates when f   0, the Monge–Ampère equation for the pressure is

hyperbolic, and the pullback metric is either Kleinian, or degenerate (corresponding to when

ζij � 0)

In higher dimensions, one may still define the Lychagin–Rubtsov metric and its pullback; in-fact,

the pullback metric may be written in terms of the velocity gradient tensor, as in (3.3.10). It

is straightforward to see that this does not, in general, simplify to Hessian form in dimension

m � 2, since our flow is given locally in terms of a stream form (1.2.8), in contrast to the

49
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two-dimensional case where one has a stream function and (2.2.1) is a genuine Monge–Ampère

equation on open, contractible sets. Hence the correspondence between the signature of the

pullback metric and the sign of f is not yet clear. It appears that an appropriate statement to

prove going forward would be akin to ‘f is non-negative only within regions where the pullback

metric is Riemannian,’ but until this is confirmed, higher dimensional flows should be treated on

a case by case basis.

We also noted that one may infer topological information about the flow from our geometric

constructions. In particular, in two dimensions, recall that the curvature (2.2.13a) of the pullback

metric is a function of the velocity and gradients of vorticity and strain, hence, the local Gauß–

Bonnet theorem (2.2.14) allows one to relate the Euler number of a (compact) region in M to

the velocity, vorticity, and strain of the flow over said domain. In three dimensions, one has to

look for alternative approaches, one of which is given by the helicity (3.3.12).

In the previous chapter, we demonstrated that for three-dimensional, incompressible fluid

flows on a Riemannian manifold with underlying symmetry described by a one-dimensional Lie

group, a symmetry reduction may be used to produce two-dimensional flows satisfying ‘adapted’

Navier–Stokes equations (4.2.4). We noted that, in general, the resultant flow may not be

incompressible and that, when the twisting parameter φ � 0 in (4.1.1), the sign of the pullback

of f̂2 � ĥ� via (4.2.10) does not directly correlate with the signature of the pullback of the

reduced Lychagin–Rubtsov metric (4.2.11), mirroring our our observations in higher dimensions

(see Section 3.4.1 and Section 4.4.2 for example). More positively, our approach to symmetry

reduction provided one significant by-product — an extension of the transformation of Lundgren,

originally replicated using Monge–Ampère geometry in [11], to a more general subset of the two-

and-a-half-dimensional flows (4.0.1).

5.2 Outlook: Classification Problems

As the results outlined above are intended to form an initial framework for the study of the

Navier–Stokes equations utilising geometric techniques, there are, quite reasonably, gaps in our

understanding to fill. We present below a brief outline of several of these, which shall become

the focus of future study.

Let us begin by addressing the ambiguous nature of the result Proposition 2.1.6. It was

previously noted that the original statement of the result by Banos [10] did not provide a strict

definition for the concept of a Lagrangian submanifold being locally-a-section, which we extra-

polated to mean Definition 2.1.5. In doing so we cover L with ‘nice’ neighbourhoods Vy which

look like a section over some open subset Uy �M . Inspired by the definition of the local section

of a bundle requiring a choice of covering, we propose that by choosing a different collection of
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‘nice’ neighbourhoods to cover L with, we may construct a hierarchy of two-dimensional Lag-

rangian submanifolds, defined in terms of local sections of T �M over M . In particular, as a

local diffeomorphism Definition 2.1.4 need not be injective or surjective onto its codomain, we

expect at least two stronger notions than Definition 2.1.5, corresponding to when π|L is injective

or surjective. In particular, when applied to Lagrangian submanifolds which are also generalised

solutions, one of these definitions should coincide with the concept of a classical/regular solution

of a Monge–Ampère equation.

Additionally, it is known [49] that generalised solutions ι : L ãÑ T �M to Monge–Ampère

structures on the cotangent bundle may exhibit singular behaviour in the form of points where

the projection π|L : π � ι : L Ñ M (with π : T �M Ñ M , as ever, denoting the canonical

projection) is non-immersive. Over a two-dimensional manifold M , such non-immersive points

can arise as cusped/folded edges in the generalised solution [49, 50] and, in the context of fluid

dynamics, have been observed in atmospheric models featuring abrupt changes in dynamics, for

example, when a shock-wave occurs [16,51]. If the classification proposed above also accounts for

such non-immersive points of the projection, it would then be possible to construct generalised

solutions to two-dimensional Monge–Ampère structures corresponding to physical, non-classical

solutions of a Monge–Ampère equation (for example weak solutions) either by defining pL, ιq such

that π|L has the desired properties, or by patching together known (potentially multi-valued,

non-immersive) solutions. This is in stark contrast to the current approach, which relies on the

concept of a generating function defined locally on the cotangent bundle [52].

Recall that, given a Monge–Ampère structure pω, αq on a four-dimensional manifold N , with

an almost (para-)complex structure defined in the manner of (2.2.3), the Lychagin–Rubtsov the-

orem [15] states that if the almost (para-)complex structure were integrable, then the Monge–

Ampère equation given by (2.1.1) is symplectically equivalent to either the Laplace equation or

the wave equation. Banos [10] later showed that, given a (symplectic) Monge–Ampère equation

on a six-dimensional manifold N , a similar result could be obtained by considering so-called

nearly (para-)Calabi–Yau structures. In particular, consider the Monge–Ampère structure con-

sisting of a pair pω, αq, with ω a symplectic 2-form and α an effective, non-degenerate 3-form,

and define an almost (para-)complex form Ĵ via the Hitchin endomorphism (3.3.4), as in (3.3.5).

The quintuple given by pN,ω, α, Ĵ , ĝq, with ĝ the Lychagin–Rubtsov metric defined up to scal-

ing by ĝpX,Y q � ωpĴ pXq, Y q (i.e. (3.3.6)) and α Hitchin decomposable [9] (see also [8] in the

context of the Navier–Stokes equations), then defines a nearly (para-)Calabi–Yau structure. If

and only if this structure is also integrable and ĝ is flat does it follow that the corresponding
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Monge–Ampère equation is symplectically equivalent to one of the following three equations:

$'''&
'''%
Hesspψq � 1

Hesspψq �∆pψq � 0

Hesspψq �lpψq � 0

(5.2.1)

This leads to the following key question: what integrable geometry can be defined on our

pm�1q-plectic Monge–Ampère type structures — structures consisting of a pair of pm�1q-plectic

forms in 2m dimensions, such as (3.3.1)? In turn, given such an integrable geometry, is there a

corresponding classification of our pm� 1q-plectic Monge–Ampère type structures, in the spirit

of [15,10]? It turns out that a potential resolution to this question comes again from the work of

Banos. Recall that a generalised almost complex structure on a manifold N is an endomorphism

J : TN ` T �N Ñ TN ` T �N on the generalised tangent bundle, such that J2 � �1. In [53]

it was noted that elements of the class of Monge–Ampère equations of divergent type in two

dimensions, with Monge–Ampère structure denoted by pω, αq, each correspond to a generalised

almost complex structure given by [54]

J �
�

Ĵ ω�1

�ω � Ĵ2  ω �Ĵ�

�
(5.2.2)

where Ĵ is the endomorphism defined by α � Ĵ  ω1, J� is its dual, and ω�1 the (symplectic)

inverse of ω. In fact, as one may choose α to be closed without loss of generality for divergent

Monge–Ampère equations, it follows that pω, αq is a Hitchin pair [53, 55] and the generalised

almost complex structure is integrable. Through the use of generating functions and the work

of [56], such divergent Monge–Ampère equations are presented in [53] as ‘generalised Laplace

equations.’ Of course, for pm � 1q-plectic Monge–Ampère type structures on 2m-dimensional

manifold N , the above is just the case m � 2; to generalise this construction to an arbitrary m,

we shall move to the realm of extended generalised complex geometry [57]. Similarly to how a

symplectic form on N may be interpreted as a mapping from TN to T �N , a k-plectic form may

be viewed as a mapping from TN to
�k�1 T �N . We may then define the extended generalised

tangent bundle TN `�k�1 T �N on which we wish to define some ‘extended generalised almost

complex structure.’

The hope is that by classifying our pm � 1q-plectic Monge–Ampère type structures in this

manner, we may map, via k-plectomorphism, the pressure equation (1.2.3c) for example, to a

simpler partial differential equation, which may then be solved, with any degeneracies being

picked up by our mapping. Note also that the type of structure (5.2.2) no longer depends on

1By careful rescaling, this may be chosen to be the almost (para-)complex structure given in (2.2.3).



5.2 Outlook: Classification Problems 53

the signature of the metric ĝ, hence this type change must be encoded in J in some manner.

In the context of the Navier–Stokes equations, one would then be able to analyse regions with

vorticity/strain dominating, based on how this type change manifests. Moving our analysis into

the realm of extended generalised complex geometry also affords us a wider range of techniques

with which to probe our fluid dynamical models.
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A
Locally-a-section Lagrangian Submanifolds

In this chapter, we shall fulfil our promise from Section 2.1 to provide a full proof of the state-

ment Proposition 2.1.6 of Banos [10]. Recall from Definition 2.1.5 that a function h : LÑM is

a local diffeomorphism if there is an open neighbourhood V around each point y P L such that

the restriction of h to V is a diffeomorphism onto the image hpV q. We also wish to restate the

definition of a locally-a-section submanifold here:

Definition A.0.1 (Locally-a-section Submanifolds)

A submanifold ι : L ãÑ T �M is called locally-a-section if, for all y P L there exists Vy � L an

open neighbourhood of y, Uy �M open, and ψ P C8pUyq such that ιpVyq � dψpUyq.
Let M be an m-dimensional, connected, Riemannian manifold with good cover and denote

the cotangent bundle by T �M and the canonical projection by π : T �M Ñ M . Let xi and

qi, with i � 1, . . .m, denote local coordinates on M and the fibres of T �M respectively. Now

consider a Lagrangian submanifold ι : L ãÑ T �M with respect to the standard symplectic form

ω :� dqi ^ dxi.

Proposition A.0.2 (Locally-a-Section iff Local Diffeomorphism)

A Lagrangian submanifold ι : L ãÑ T �M is locally-a-section if and only if the map π|L :� π � ι :
LÑM is a local diffeomorphism.

Proof. Let L be locally-a-section, so for all y P L, there exists V � L open, U � M open,

and ψ P C8pUq such that dψpUq � ιpV q. We wish to show that π|LpV q is open in M and

π|L|V :� π|V � π|ιpV q � ι is a diffeomorphism onto its image. As pL, ιq is a smoothly embedded

submanifold, ι is a topological diffeomorphism, hence V and ιpV q are diffeomorphic, with ιpV q
carrying the subspace topology in T �M . Further, as the restriction π|dψpUq is the inverse of

dψ : U Ñ dψpUq � T �M , U and dψpUq are diffeomorphic, where dψpUq carries the subspace

topology in T �M . Combining this with the locally-a-section Definition A.0.1 property, dψpUq �
ιpV q, one has that the composition π|V is a diffeomorphism onto image, with inverse ι�1 � dψ :
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U � πLpV q Ñ V . Note that π|LpV q � U , which is known to be open in M . In summary, π|L is

a local diffeomorphism.

Conversely, let y be an arbitrary point in L. By the local diffeomorphism property of π|L :

L Ñ M , there exists some open neighbourhood V � L of y such that π|LpV q �: U is open

in M and π|V is a diffeomorphism onto its image. Let yi be local coordinates on V . Then,

V Q yi π|LÞÝÝÑ xipyq P U . Again by the local diffeomorphism properties of π|L, we have locally

the invertibility of the Jacobian Bxi
Byj and the inverse relation yi � yipxq. Hence, the embedding

ι : L ãÑ T �M becomes i : yi ÞÑ pxipyq, qipyqq � pxi, qipypxqqq �: pxi, pipxqq in local coordinates.

Furthermore, since L is Lagrangian with respect to ω � dqi ^ dxi, we find

Bxi
Byj

Bqi
Byk � Bxi

Byk
Bqi
Byj (A.0.1)

upon computing ι�ω � 0.1 Hence,

Bxi
Byl

�Bpj
Bxi �

Bpi
Bxj



� Bxi
Byl

�Byk
Bxi

Bqj
Byk �

Byk
Bxj

Bqi
Byk




� Bqj
Byl �

Byk
Bxj

Bxi
Byl

Bqi
Byk

� Bqj
Byl �

Byk
Bxj

Bxi
Byk

Bqi
Byl

� Bqj
Byl �

Bqj
Byl

� 0 .

(A.0.2)

Therefore,
Bpj
Bxi �

Bpi
Bxj � 0 (A.0.3)

that is, the one-form η :� pidxi is closed. Consequently, by the Poincaré lemma, there is a

function ψ P C8pUq so that η � dψ (and therefore pi � Biψ). It follows that dψpUq � ιpV q. In

summary, L is locally-a-section.

Note that the forward implication that π|L is a local diffeomorphism if the Lagrangian sub-

manifold ι : L ãÑM is locally a section does not require any contractibility assumption on M , in

contrast to the converse direction, which utilises the Poincarè lemma. Observe from the above

proof that, for locally-a-section submanifolds and suitably nice sets V � L, U � π|LpV q � M ,

one can explicitly write the inverse ι�1 �dψ : U Ñ V of the map π|L. Consequently, by the local

diffeomorphism property of π|L, one may use the same coordinates on such suitably nice corres-

ponding pairs of sets. Conversely, if a Lagrangian submanifold L has an open neighbourhood

around each point on which one can take coordinates from M , it follows that the submanifold is

locally-a-section.
1Note that ι�

�
B
Byi

�
� Bxj

Byi
B
Bxj �

Bqj
Byi

B
Bqj

.



B
Geometric Structures

B.1 Almost Complex Structures and Differential Forms

Let pN,ωq be a 2m-dimensional almost symplectic manifold (that is, ω is non-degenerate but

not necessarily closed). Following [14], a differential p-form is called ω-effective if and only if

ω�1 α � 0. Whenever p � m, this is equivalent to requiring α^ω � 0, as defined in (2.1.1) for

N � T �M . Then we have the Hodge–Lepage–Lychagin theorem [14] (see also the text book [13]

for a comprehensive treatment), stated as follows:

Theorem B.1.1 (Hodge–Lepage–Lychagin Theorem)

Let pN,ωq be an almost symplectic manifold. Then, any differential p-form α P ΩppNq has a

unique decomposition α � α0 � α1 ^ ω � α2 ^ ω ^ ω � � � � into ω-effective differential pp� 2kq-
forms αk P Ωp�2kpNq. Furthermore, if two ω-effective p-forms vanish on the same p-dimensional

isotropic submanifolds, they must be proportional.

Let now N be four-dimensional and pω, αq a Monge–Ampère structure on N , that is, α P
Ω2pNq with α ^ ω � 0 and suppose that Pfpαq P C8pNq, defined by α ^ α � Pfpαqω ^ ω, is

non-zero. We then set [15]
αa
|Pfpαq| �: Jα

 ω , (B.1.1)

where Jα is an almost complex (respectively, para-complex) structure when Pfpαq ¡ 0 (respect-

ively, Pfpαq   0). The differential forms ω and Jα  ω define the non-degenerate differential

p2, 0q- and p0, 2q-forms with respect to Jα.1 Then, we have the following result:

Proposition B.1.2 (Existence of Differential p1, 1q-Forms)

For Jα as defined in (B.1.1) there exists a differential p1, 1q-form K on N such that K ^K � 0,

K ^ ω � 0, and K ^ pJα  ωq � 0.

1In particular, for Jα almost complex, fix ωp�q � ω � iJα
 ω and note Jα

 ω� � 	iω�. For Jα almost
para-complex, omitting the factor of i in ω� yields Jα

 ω� � �ω�.
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Proof. Note that ω and Jα  ω are linearly independent. Next, let ρ P Ω2pNq be such that

tω, Jα  ω, ρu is linearly independent. By Theorem B.1.1, we have a unique decomposition

ρ � ρ0 � λ0ω with ρ0 ^ ω � 0 and λ0 P C8pNq. Since pJα  ωq ^ pJα  ωq � 0, we may again

apply Theorem B.1.1 to obtain the unique decomposition ρ0 � ρ1�λ1pJα ωq with λ1 P C8pNq
such that ρ1^pJα ωq � 0. Since pJα ωq^ω � 0, we also have ρ1^ω � 0. Hence, tω, Jα ω, ρ1u
is linearly independent, and we must also have that ρ1^ ρ1 � 0 since the exterior product yields

a non-degenerate metric on
�2 T �N . In summary, we have thus obtained a K :� ρ1 such that

K ^ K � 0, K ^ ω � 0, and K ^ pJα  ωq � 0. Finally, since ω and Jα  ω combine to

give the differential p2, 0q-form Ωp2,0q and differential p0, 2q-form Ωp0,2q and since K ^ ω � 0 and

K ^pJα ωq � 0, we conclude that K ^Ωp2,0q � 0 and K ^Ωp0,2q � 0. Since Ωp2,0q^Ωp0,2q � 0,

K must be of type p1, 1q with respect to Jα.

B.2 Integrability and Quaternionic Structures

As promised in Section 3.2, we now demonstrate how to refine the almost (para-)Hermitian

form (3.2.6) and almost (para-)Hermitian metric (2.2.5) in such a way that they induce a triple

of endomorphisms exhibiting (pseudo-)quaternionic behaviour. In particular, we show that for

constant, non-zero f̂ , the differential p1, 1q-form K̂ is a hyper-(para-)Kähler structure, hence ĝ is

a hyper-(para-)Kähler form.

Let M be a two-dimensional Riemannian manifold, with differential forms α and φ defined

on T �M as in (3.3.1). Further, let ω be the standard symplectic form on T �M . Following [11,7],

consider the normalised form αf̂ � α?
|f̂ |

and take the triple of differential 2-forms pω,ϖ, αf̂ q.
Note that both ω and ϖ are non-degenerate and closed, and we have the following relations

αf̂ ^ αf̂ � sgnpf̂qω ^ ω , αf̂ ^ αf̂ � sgnpf̂qϖ ^ϖ , ϖ ^ϖ � ω ^ ω , (B.2.1)

αf̂ ^ ω � 0 , αf̂ ^ϖ � 0 , ϖ ^ ω � 0 , (B.2.2)

Observe that αf̂ is non-degenerate where it is well defined, that is, when f̂ � 0. Further, since

α is closed, it follows that dαf̂ � d
�

1?
|f̂ |



α, hence αf̂ is closed if and only if f̂ is constant

on T �M . It follows that the triple pω,ϖ, αq are pairwise Monge–Ampère structures. Recall

from (2.2.3) and (3.2.4), it is possible to define the endomorphisms

αf̂ �: Ĵ  ω and αf̂ �: Ĵ  ϖ , (B.2.3)

which are almost complex for f̂ ¡ 0, almost para-complex for f̂   0, and by the Lychagin–

Rubtsov theorem [15, 13] are integrable precisely when αf̂ is closed, that is, if and only if f̂ is

constant. We may additionally define the following endomorphism

ϖ �: R̂ ω , (B.2.4)
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which is always a complex structure, by (B.2.1). Further, recalling from (2.2.4) and (3.2.6) that

K̂ :� � sgnpf̂q
b
|f̂ |ϖ and K̂ :� sgnpf̂q

b
|f̂ |ω , (B.2.5)

we construct a triple of almost (para-)Hermitian forms on T �M , namely pK̂, K̂, αq. In addition,

the metric (2.2.5) can then be described in each of the following ways

ĝpX,Y q � K̂pX, ĴY q � K̂pX, Ĵ Y q � αpX, R̂Y q , (B.2.6)

hence ĝ is almost (para-)Hermitian with respect to all three of our almost complex structures

when f̂ � 0 and (para-)Kähler precisely when f̂ is a non-zero constant. It can be verified that

the compositions of R̂, Ĵ , and Ĵ obey the following Cayley table

I R̂ Ĵ Ĵ
I I R̂ Ĵ Ĵ
R̂ R̂ �I Ĵ �Ĵ
Ĵ Ĵ �Ĵ � sgnpf̂qI sgnpf̂qR̂
Ĵ Ĵ Ĵ � sgnpf̂qR̂ � sgnpf̂qI

where I denotes the identity endomorphism. Hence, when f̂ ¡ 0 (resp. f̂   0), the triple

pR̂, Ĵ , Ĵ q are (pseudo-)quaternionic [5], and pα,ϖf̂ , K̂q form a triple of almost hyper (para-

)complex structures. When f̂ is constant in addition to the above, such that our structures are

integrable, they are said to be hyper (para-)complex, and the metric ĝ is not only (para-)Kähler,

but hyper-(para-)Kähler.

In comparison to the hyper-(para-)Kähler structures that arise from the semi-geostrophic

equations in [58] and the group structure of the analogous tensors presented in [11], the group

structure of our almost (para-)complex structures exhibits a type change under the sign change

of f̂ , which is not present in the aforementioned works. This suggests that our choice of Monge–

Ampère structure is more natural for treating the dominance of vorticity and strain.

We make one final observation arising from the above structure. Observe that when f̂ is a

non-zero constant, T �M is hyper-(para-)Kähler and hence (para-)Calabi-Yau. It then follows

that T �M with the metric ĝ is Ricci flat. Ricci flatness implies that R̂ � 0 and using the

formula (C.2.12b), specialised to the case of two-dimensional flows with constant f̂ , yields

0 � R̂ � R̊
f̂2

�
2f̂ � ∆̊Bp

�
. (B.2.7)

It follows that either R̊ � 0 or f̂ � 1
2∆̊Bp. The latter implies that R̊|q|2 � 0 and as |q| takes

all non-negative real values on T �M , from which it again follows that R̊ � 0. Hence, for two-

dimensional, incompressible flows, f̂ being constant implies that M is flat. By contraposition

then, M not being flat implies that f̂ is non-constant, which in turn implies that Ĵ and Ĵ are

not integrable, that is, they are never (para-)complex on non-flat M .
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C
Connections and curvatures

C.1 Pullback Metric in Two Dimensions

In what follows, we provide some more details on the computation of the Levi-Civita connection

and Ricci curvature scalar associated with the metric (2.2.7) from Section 2.2. Firstly, recall that

using (2.2.6), the metric (2.2.7) can be written in the form

gij � ζg̃ij with g̃ij � ψij , (C.1.1)

where the indices on ψ P C8pMq are interpreted via (2.2.10). Observe that, when ζ � 0, g is a

conformal scaling of the metric sgnpζqg̃ with conformal factor |ζ|, where g̃ is the Hessian metric

with respect to ψ. We wish to exploit this conformal nature to write the Levi-Civita connection

and Ricci curvature scalar of g in terms of those of g̃.

C.1.1 Levi-Civita Connection of the Pullback Metric

We begin by observing that a consequence of the Ricci identity

r∇̊i, ∇̊jsηk � �R̊ipjkqlηl , (C.1.2)

for one-forms η � ηidxi, is the following expression for the triple derivative of ψ in terms of the

totally symmetrised triple derivative and curvature terms:

∇̊iψjk � ψijk � 1
3

�r∇̊i, ∇̊jsψk � r∇̊i, ∇̊ksψj
� � ψijk � 2

3R̊ipjkq
lψl . (C.1.3)

Upon applying the first Bianchi identity, we then find

∇̊iψjk � ∇̊jψik � ∇̊kψij � ψijk � 4
3R̊kpijq

lψl . (C.1.4)
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Consequently, the Christoffel symbols for g̃ are given by

Γ̃ij
k � 1

2 g̃
klpBig̃jl � Bj g̃il � Blg̃ijq

� Γ̊ij
k � 1

2 g̃
kl
�
∇̊iψjl � ∇̊jψil � ∇̊lψij

�
� Γ̊ij

k � 1
2Υijlg̃

lk ,

(C.1.5a)

where we have used (C.1.4) and introduced the notation

Υijk :� ψijk � 4
3R̊kpijq

lψl . (C.1.5b)

This thus verifies (2.2.12b). Note that, in general, when the metric is changed by an overall sign,

the Christoffel symbols of the second kind are unchanged, hence (C.1.5a) are also the Christoffel

symbols for sgnpζqg̃, when ζ � 0. The Christoffel symbols (2.2.12a) are then a result of the

following proposition (see e.g. [59]) with ϕ � 1
2 logp|ζ|q and g1 � sgnpζqg̃.

Proposition C.1.1 (Conformal Scaling of the Levi-Civita Connection)

Let M be a smooth (pseudo-)Riemannian manifold with metric g � e2ϕg1, where ϕ P C8pMq
and g1 is another metric on M , to which g is conformal. Let Γ1ij

k denote the Christoffel symbols

of the second kind associated with g1. Then the Christoffel symbols of the second kind associated

with g are given in terms of g1 as

Γij
k � Γ1ij

k � pBiϕqδjk � pBjϕqδik � pBlϕqg1lkg1ij , (C.1.6)

where g1ij denotes the inverse of the metric g1ij.

C.1.2 Ricci Curvature Scalar of the Pullback Metric

Let us now turn to computing the curvature scalar for the metric (2.2.7). Firstly, we note that

R̃ijk
l � BiΓ̃jkl � BjΓ̃ikl � Γ̃ik

pΓ̃jp
l � Γ̃jk

pΓ̃ip
l

� R̊ijk
l � 1

2

�
∇̊iΥjk

l � ∇̊jΥik
l � 1

2Υik
pΥjp

l � 1
2Υjk

pΥip
l
�
,

(C.1.7)

where we have used (C.1.5a) and set Υij
k :� Υijlg̃

lk. Next, using (C.1.3), it is straightforward

to show that

∇̊ig̃
jk � �g̃jlg̃kp�ψilp � 2

3R̊iplpq
nψn

�
. (C.1.8)

and

∇̊iψjkl � ψijkl � 3
2R̊ipjk

pψlqp . (C.1.9)

Using these two relations, we find that

∇̊iΥjk
l � ∇̊ipg̃lpΥjkpq
� �g̃lr�ψirs � 2

3R̊iprsq
nψn

�
Υjk

s

� g̃lp�ψijkp � 3
2R̊ipjk

nψpqn � 4
3R̊ppjkq

nψin � 4
3∇̊iR̊ppjkqnψn

�
.

(C.1.10)
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Upon substituting this expression and (C.1.5b) into (C.1.7), the curvature scalar (2.2.13b) then

follows directly from the traces R̃ � g̃ijR̃kij
k.

The following proposition (see e.g. [59]), again with ϕ � 1
2 logp|ζ|q, gives the Ricci curvature

scalar of g in terms of that for g1 � sgnpζqg̃, when m � 2.

Proposition C.1.2 (Conformal Scaling of the Ricci Curvature Scalar)

Let M be a smooth, m-dimensional, (pseudo-)Riemannian manifold with metric g � e2ϕg1, where

ϕ P C8pMq and g1 is another metric on M , to which g is conformal. Let R1 denote the Ricci

curvature scalar associated with g1. Then the Ricci curvature scalar associated with g is given in

terms of g1 as

R � e�2ϕ
�
R1 � 2pm� 1q∆1ϕ� pm� 2qpm� 1q|dϕ|2� , (C.1.11)

where g1ij denotes the inverse of the metric g1ij and ∆1 denotes the Beltrami Laplacian with respect

to g1.

Recall that the Beltrami Laplacian with respect to a metric g̃ can be written as

∆̃ϕ � 1a
|detpg̃q|Bi

�a
|detpg̃q|g̃ijBjϕ

�
, (C.1.12)

and note that, when the metric is changed by an overall sign, both the Ricci curvature scalar

and the Beltrami Laplacian change by the same sign. The curvature scalar (2.2.13a) then follows

from applying these observations to (C.1.11), hence writing the Ricci curvature scalar of g in

terms of g̃.

C.2 Lychagin–Rubtsov Metric with Arbitrary Background Dimension

We now wish to compute the curvature related to the metric (2.2.5). Before we do so, however,

let us summarise some general formulæ from the vielbein formalism as it is more efficient than

working in a coordinate basis.

C.2.1 Vielbein formalism

Let pM, gq be an m-dimensional (semi-)Riemannian manifold coordinatised by xi with i, j, . . . �
1, . . . ,m. Then, g � 1

2gijdx
iddxj . We denote the vielbeins by Ea P XpMq for a, b, . . . � 1, . . . ,m

with Ea � Ea
iBi and pEaiq P C8pM,GLpdqq. Dually, we have ea P Ω1pMq with Ea  eb � δa

b,

ea � dxieia with peiaq P C8pM,GLpdqq, and Eaieib � δa
b and eiaEaj � δi

j . The metric can then

be written as g � 1
2e
b d eaηab with ηab � diagp�1, . . . ,�1, 1, . . . , 1q.

The structure functions Cabc P C8pMq are given by

rEa, Ebs � Cab
cEc , (C.2.1a)
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or, dually,

dea � 1
2e
c ^ ebCbca . (C.2.1b)

The torsion and curvature two-forms,

T a � 1
2e
c ^ ebTbca and Ra

b � 1
2e
d ^ ecRcdab , (C.2.2a)

are defined by the Cartan structure equations

dea � eb ^ ωba �: �T a and dωab � ωac ^ ωcb �: �Rab , (C.2.2b)

where ωab � ecωca
b is the connection one-form. The associated Ricci tensor and the curvature

scalar are then given by

Rab :� Rcab
c and R :� ηbaRab . (C.2.2c)

Furthermore, metric compatibility amounts to requiring

ωab � �ωba with ωab :� ωa
cηcb . (C.2.3)

The Levi-Civita connection follows upon imposing the metric compatibility ωab � �ωba as

well as the torsion freeness T a � 0, and a short calculation shows that it is given by

ωab
c � 1

2pCcab � Ccba � Cabcq (C.2.4)

with indices raised and lowered using ηab. In this case, the curvature scalar (C.2.5) is

R � 2EaC
a
b
b � CabbCacc � 1

2CabcC
acb � 1

4CabcC
abc . (C.2.5)

C.2.2 Levi-Civita Connection of the Lychagin–Rubtsov Metric

Let now pM, g̊q be an m-dimensional Riemannian manifold, and consider the the metric (3.3.6)

on T �M . Furthermore, let

E̊a :� E̊a
i B
Bxi and e̊a :� dxie̊ia (C.2.6)

be the vielbeins and dual vielbeins on pM, g̊q with structure functions C̊abc, and set

pêAq � pêa, êaq :�
�b

|f̂ | dxie̊ia, E̊ai ∇̊qi
	
,

pη̂ABq �
�
η̂ab η̂a

b

η̂ab η̂ab

�
:�

�
sgnpf̂q1m 0

0 1m

�
,

(C.2.7)

for multi-indices A,B, . . .. Then, the metric (3.3.6) becomes

ĝ � 1
2 ê
B d êAη̂AB . (C.2.8)
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Note that e̊ia and E̊ai do only depend on the base manifold coordinates xi and not on the fibre

coordinates qi. Next, dually, we have ÊA  êB � δA
B with pÊAq � pÊa, Êaq and

Êa :� 1b
|f̂ |
E̊a

i

� B
Bxi � Γ̊ij

kqk
B
Bqj



and Êa :� e̊i

a B
Bqi . (C.2.9)

A straightforward calculation then yields, for rÊA, ÊBs � ĈAB
CÊC , the relations

rÊa, Êbs � 1?
|f̂ |
C̊ab

cÊc � Êra log
�
|f̂ |

	
Êbs � 1

|f̂ |R̊abc
dqdÊ

c , (C.2.10a)

rÊa, Êbs � 1
2Ê

b log
�
|f̂ |

	
Êa � 1?

|f̂ |
ω̊ac

bÊc , (C.2.10b)

rÊa, Êbs � 0 , (C.2.10c)

where we have set qa :� E̊a
iqi and used the identities

ω̊ab
c � E̊a

iE̊b
j

�
Γ̊ij

ke̊k
c � B

Bxi e̊j
c



and R̊abc

d � E̊a
iE̊b

jE̊c
kR̊ijk

le̊l
d . (C.2.10d)

Reading off the structure functions ĈABC from these relations and using the formula (C.2.4),

the Levi-Civita connection ω̂AB
C for the metric (3.3.6) in terms of the Levi-Civita connection

ω̊ab
c for the background metric g̊ is given by

ω̂AB
C � 1

2pĈCAB � ĈCBA � ĈABCq . (C.2.11)

C.2.3 Ricci Curvature Scalar of the Lychagin–Rubtsov Metric

Upon combining (C.2.10) and (C.2.11) with (C.2.5), the curvature scalar of the metric (3.3.6) is

given by

R̂ � 1
f̂
R̊� 1

4f̂2
R̊abc

dR̊abceqdqe � pm� 1q∆̂B log
�
|f̂ |

	
� δabÊaÊb log

�
|f̂ |

	
� sgnpf̂q

4 pm� 1qpm� 2qδabÊa log
�
|f̂ |

	
Êb log

�
|f̂ |

	
� 1

4mpm� 3qδabÊa log
�
|f̂ |

	
Êb log

�
|f̂ |

	
,

(C.2.12a)

where ∆̂B is the Beltrami Laplacian for ĝ. Here, R̊abcd is the Riemann curvature tensor for the

background metric g̊ and R̊ the associated curvature scalar. In our coordinate basis, this becomes

R̂ � 1

f̂
R̊� 1

4f̂2
R̊ijk

lR̊ijkmqkqm � pm� 1q∆̂B log
�
|f̂ |

	
� g̊ij B2

BqiBqj log
�
|f̂ |

	

� 1

4f̂
pm� 1qpm� 2q̊gij

� B
Bxi � Γ̊ik

lql
B
Bqk



log

�
|f̂ |

	� B
Bxj � Γ̊jm

nqn
B
Bqm



log

�
|f̂ |

	

� 1

4
mpm� 3q̊gij BBqi log

�
|f̂ |

	 B
Bqj log

�
|f̂ |

	
,

(C.2.12b)
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where we have used (C.2.9). This verifies (2.2.9) and (3.3.7).

Finally, we note that in the case of the flat background metric g̊ij � δij , we have f̂ � f � 1
2∆p

with ∆ the standard Laplacian on Rm and so, the formula (C.2.12b) simplifies to

R̂ � m� 1

4f3
rp6�mqBifBif � 4f∆f s . (C.2.13)
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D.1 Seminar Review: Hyperbolic Angles in Lorentzian Pre-Length Spaces

This extended abstract is intended to give a brief overview of the talk entitled ‘Hyperbolic Angles

in Lorentzian Length Spaces’ given by Tobias Beran (Universität Wien) online on the 29th Oc-

tober 2021 as part of the DIANA Seminar series. The presentation was based on the paper

[60] by Tobias Beran and collaborator Clemens Sämann, building on previous work by Michael

Kunzinger, Clemens Sämann, and Roland Steinbauer in [61], [62], to which I refer the reader for

a more extensive discussion of comparison theorems and causal curves.

Definition D.1.1 (Lorentzian Pre-length Space)

A set pX, dq, equipped with a pre-order ¤ and a transitive relation !, is called a causal space if

for all x, y P X, the condition x ! y Ñ x ¤ y holds (that is, ! is contained within ¤). If, in

addition, X is equipped with a metric d and there exists a function τ : X�X ñ r0,8s satisfying

the following:

(i) τ is lower semi-continuous with respect to d,

(ii) The reverse triangle inequality τpx, zq ¥ τpx, yq� τpy, zq for all x, y, z P X with x ¤ y ¤ z,

(iii) τpx, yq ¡ 0ô x ! y for all x, y P X,

then the quintuple pX, d, τ,¤,!q is called a Lorentzian pre-length space and τ is referred to as

the time-separation function.

Note that throughout this appendix, ¤ will denote the pre-order in the Lorentzian pre-

length space, while ¥ will denote the natural ordering on R. Further, we refer to ¤ as the causal

relation and ! as the timelike relation on X where nomenclature is necessary. Let L2pKq denote

the simply connected two-dimensional Lorentzian model space of constant (sectional) curvature

K P R.1

Definition D.1.2 (Timelike and Comparison Triangles)

Let X be a Lorentzian pre-length space. We define the following:

(i) A timelike (geodesic) triangle ∆px1, x2, x3q in X is a triple of timelike related points x1 !
x2 ! x3 P X such that there exists a (future-directed) causal curve of τ -length τpxi, xjq,
which is finite, for all i   j.

(ii) A comparison triangle ∆̄px̄1, x̄2, x̄3q in L2pKq for ∆px1, x2, x3q is a timelike triangle whose

sides satisfy τpxi, xjq � τ̄px̄i, x̄jq for all i   j, where τ̄ is the time-separation function on

L
2pKq.2

1In particular, for K � 0, 1,�1 we have the Minkowski, de Sitter, and anti-de Sitter spaces respectively.
2The time-separation function on a Lorentzian model space is simply the Lorentzian metric on the space.
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We shall call τ locally finite-valued onX if each point x P X has a neighbourhood U � X such

that τ |U�U s finite valued. Further, a timelike triangle ∆px1, x2, x3q is said to satisfy timelike

size bounds for K   0 if π?�K ¥ τpx1, x3q ¥ τpx1, x2q� τpx2, x3q, where π?�K is called the finite

timelike diameter of L2pKq.
Definition D.1.3 (K-comparison Angles)

Let pX, d,¤,!, τq be a Lorentzian pre-length space and ∆px1, x2, x3q a timelike triangle in X

with comparison triangle ∆̄px̄1, x̄2, x̄3q in L2pKq, for some K P R. Should K   0, impose that

∆px1, x2, x3q satisfies size bounds for K. The K-comparison (hyperbolic) angle at x1 is then

given by

>̃K
x1px2, x3q :� >

L
2pKq

x̄1 px̄2, x̄3q , (D.1.1)

where the angle on the right hand side is the usual hyperbolic angle on the model space, given by

the hyperbolic-cosine rule.

It is noted that the above construction is also defined for triangles where x2 and x3 are only

causally related, that is, x2 ¤ x3. The angle at x3 may also be defined by appealing to time

reversal. To define the angle at x2, the finite side length τpx1, x2q must be considered, as opposed

to τpx2, x1q. To account for this, the angles at x1 and x3 are typically decorated with a minus

sign. The concept of an angle can also be readily extended to timelike curves:

Definition D.1.4 (Upper Angles Between Curves)

For pX, d,¤,!, τq a Lorentzian pre-length space, with τ locally finite-valued, consider a pair of

future (past) directed timelike curves α, β : r0, ϵq Ñ X with αp0q � βp0q �: x. Denote by A0 the

set of pairs ps, tq P p0, ϵq2 on which either αpsq ¤ βptq or βptq ¤ αpsq. The upper angle between

α and β is given by

>xpα, βq :� lim sup
ps,tqPA0×0

>̃0
xpαpsq, βptqq . (D.1.2)

Upper angles always exist; if lim
ps,tqPA0×0

>̃0
xpαpsq, βptqq exists and is finite, then we call >xpα, βq

the angle between α and β.

Having defined the concept of an angle on a Lorentzian pre-length space, given a pair of time-

like curves, the seminar closed by discussing in brief several additional results and open questions.

Key among these included a triangle inequality for upper angles, local timelike curvature bounds

defined in terms of the monotonicity of angles, and the concept of hinges. Such constructions

may be useful in the application of synthetic Lorentzian geometry to the field of general relativity

- in particular, they may be used to globalize curvature bounds on Lorentzian pre-length spaces,

which shall be discussed a little at the end of the next section. It should be noted that the

fundamental ideas above mirrored by own work during an LMS funded undergraduate research

bursary.
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D.2 Seminar Review: Gluing Constructions in Lorentzian Pre-Length Spaces

This second extended abstract covers material from an additional talk in the DIANA seminar

series, following on from the above work and entitled ’Gluing Constructions for Lorentzian Length

Spaces’. The presentation was given on the 21st January 2022 by Felix Rott (Universität Wien)

and treats the formulation of an analogue to the Reshetnyak theorem for the amalgamation of

CAT(k) spaces (geodesic metric spaces with sectional curvature bounded above by k P R), in

the setting of Lorentzian pre-length spaces.

Definition D.2.1 (Amalgamation of Metric Spaces)

Given metric spaces pX1, d1q , pX2, d2q with respective closed, isometric subspaces A1, A2, let �
be the equivalence relation given by the isometry f : A1 Ñ A2 such that a � fpaq for all a P A1.

Then the quotient space X̃ :� pX1 >X2q{ � with metric denoted d̃, is called the amalgamation of

X1 and X2.

Theorem D.2.2 (Reshetnyak Theorem)

Consider now pX1, d1q , pX2, d2q a pair of proper, CATpk) metric spaces with respective closed,

complete, convex, and isometric subspaces A1, A2. Then the amalgamation pX̃, d̃q, as defined

above, is also a CAT pkq space.

It is worth giving an explicit description of the metric d̃ before proceeding. For two metric

spaces pX1, d1q, pX2, d2q, the disjoint union metric on X :� X1 >X2 is given by

dpx, yq :�

$'&
'%
dipx, yq, if x, y P Xi

8, else.
(D.2.1)

For a metric space pX, dq and an equivalence relation �, the quotient semi-metric d̃ : X̃ � X̃ Ñ
r0,8s on the quotient space X̃ :� X{ � is given by

d̃prxs, rysq :� inf

#
ņ

i�1

dpxi, yiq
�����x � x1, y � yn, xi�1 � yi, n P N

+
. (D.2.2)

It follows that the metric on an amalgamation X̃ :� pX1 > X2q{ � is given by the quotient

semi-metric with respect to the disjoint union metric on X1 >X2.

In order to replicate the above theorem in the Lorentzian pre-length space framework, we

need to define the amalgamation of such spaces. In doing so, a time-separation function, causal

relation, and timelike relation on the usual amalgamation of Lorentzian Pre-length spaces (which

are metric spaces) should be defined and conditions on the resulting quintuple being a Lorent-

zian Pre-length space should be found. We proceed by noting the disjoint union of Lorent-

zian Pre-length spaces pX1, d1,¤1,!1, τ1q, pX2, d2,¤2,!2, τ2q, is a Lorentzian Pre-length space
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pX1 >X2, d,¤,!, τq, where d is the disjoint union metric, ¤:�¤1 > ¤2, !:�!1 > !2,1 and the

disjoint union time separation is (in contrast with the disjoint union metric) defined as

τpx, yq :�
$&
%τipx, yq ifx, y P Xi

0, else.
(D.2.3)

The associated ’quotient time-separation function’ on X̃ � X{ � is then given by

τ̃prxs, rysq :� sup

#
ņ

i�1

dpxi, yiq
�����x � x1, y � yn, xi�1 � yi, xi ¤ yi, n P N

+
(D.2.4)

from which causal ¤̃ and timelike !̃ relations may be defined

rxs¤̃rys ô
#

ņ

i�1

dpxi, yiq
�����x � x1, y � yn, xi�1 � yi, xi ¤ yi, n P N

+
� H , 2 (D.2.5a)

rxs!̃rys ô τ̃prxs, rysq ¡ 0 , (D.2.5b)

respectively. It follows that pX̃, ¤̃, !̃q defined in this way is a causal space, however it is not

true in general that τ̃ is lower semi-continuous, so pX̃, d̃, ¤̃, !̃, τ̃q may not be a Lorentzian pre-

length space. Conditions under which τ̃ is lower semi-continuous were discussed briefly as the

presentation came to a close. In these cases, the Lorentzian pre-length space pX̃, d̃, ¤̃, !̃, τ̃q is

called the Lorentzian amalgamation of X1 and X2. A full analogue to the Reshetnyak gluing

theorem in the synthetic Lorentzian case is then given by the above construction alongside said

conditions - these latter notions are explored more thoroughly in the paper [63] on which the

presentation was based.

Since attending the above pair of talks, I have undertaken further work with the speakers,

to utilise the concepts of gluing constructions and angle comparison in the globalization of

curvature bounds in Lorentzian pre-length space. A publication is currently under way, treating

the synthetic Lorentzian analogue to the Alexandrov patchwork globalization theorem [64] for

spaces with timelike curvature bounded above. Additionally, a Bonnet-Myers’ theorem result

has been determined for spaces of global curvature bounded below. Further analysis needs to

be undertaken to globalize curvature bounded below, which shall hopefully be worked on in the

coming months.

1Here x ¤ y iff there exists i P t1, 2u such that x, y P Xi and x ¤i y and similarly for !.
2Note we use the convention supH � 0
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D.3 PGR Student Seminar Participation Form

Student Name: Lewis Napper

Supervisor Name: Dr. Martin Wolf, Prof. Ian Roulstone

Number of Hours Requested Towards Broadening Training (20 hours):

In the table below give the date of the talk, its title, the speaker’s name and tick if you intend

to submit an extended abstract for this talk. Ask an attending academic to initial the form to

validate your attendance. Talks can include: colloquia, research group seminars, pre-viva talks,

reading groups etc. by both internal and external speakers.

Date Abbreviated Title Speaker Extended

Ab-

stract?

Academic

initials

29/10/21 Hyperbolic Angles in

LPLS

Tobias Beran Yes JDEG

21/1/22 Gluing Constructions in

LPLS

Felix Rott Yes JDEG

To claim 10/20 hours towards your broadening training requires 1/2 extended abstracts and

this form to be submitted with your Confirmation Report.
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D.4 Assessment

To be completed by the Confirmation Examiners following a discussion of the extended

abstract/s submitted by the student with the Confirmation Report.

1. Did the student submit the requisite number of extended abstracts for the requested

number of hours? (1 for 10 hours or 2 for 20 hours)

YES NO

2. Was the student able to suitably discuss the content of the seminars for which the

extended abstracts were submitted?

YES NO

3. In your opinion should the student be awarded the requested number of hours toward

their broadening training commitment?

YES NO

4. If you have further comments then add them here.

Signatures and Date:

Examiner 1: Examiner 2:

Date:

PGR Director:

Date:
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