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Previous Talks in this Series

➤ Volodya Rubtsov (14th April 2023)
Symplectic and Contact Geometry of Monge–Ampère Equations:
Introduction and Applications. [Kushner et al. 2007]

➤ Roberto D’Onofrio (28th April 2023)
Singularities in Geophysical Fluid Dynamics Through
Monge–Ampère Geometry. [D’Onofrio et al. 2023]

➤ Ian Roulstone (2nd June 2023)
Applications of Symplectic Geometry in Fluid Dynamics.
[Banos et al. 2016]

https://bit.ly/3QF6nb0
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(Contact) Monge–Ampère Equations

➤ Are non-linear second-order PDEs which are quasi-linear w.r.t
second order partial derivatives, up to determinants of the Hessian
or its minors.

➤ In two dimensions, they take the form

Aψxx + 2Bψxy + Cψyy +D
(
ψxxψyy − ψ2

xy

)
+ E = 0 .

where A,B, . . . E can depend on x, y, ψ, ψx, ψy non-linearly.

➤ If A,B, . . . E do not depend on ψ, we have a symplectic
Monge–Ampère (MA) equation.
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Examples of Monge–Ampère Equations

Key linear examples:

➤ Laplace: ∆ψ = 0

➤ Wave: □ψ = 0

From (3D) semi-geostrophic theory:

➤ Ertel: det(Hess(P )) = qg

➤ Chynoweth–Sewell: qg(TxxTyy − (Txy)
2) + Tzz = 0

Here, qg is potential vorticity, P is a (modified) geopotential, and T is
its partial Legendre dual with respect to x and y.

[Chynoweth and Sewell 1989, D’Onofrio et al 2023]
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Terminology and Notation

➤ Configuration Space / Background: Rm (or M with metric g)

with coordinates (xi), i = 1, 2, · · ·m.

➤ Phase Space / Cotangent Bundle: T ∗Rm (or T ∗M)

with coordinates (xi, qi), i = 1, 2, · · ·m
(q’s are fibre coordinates).

➤ Use Einstein summation convention.
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Monge–Ampère Structures and Solutions

➤ A Monge–Ampère Structure is a triple (T ∗Rm, ω, α) with

☞ ω ∈ Ω2(T ∗Rm) symplectic, e.g. ω = dqi ∧ dxi,
☞ α ∈ Ωm(T ∗Rm) is ω-effective, i.e. α ∧ ω = 0,

We call α the Monge–Ampère Form. [Banos 2002]

➤ A Generalised Solution to a MA equation, w.r.t. a MA structure, is
a submanifold L ↪→ T ∗Rm s.t.

☞ L is Lagrangian, i.e. dim(L) = m and ω|L = 0.
☞ α vanishes on L, i.e. α|L = 0.

[Kushner et al. 2007]

https://bit.ly/3GDxiQ0
https://bit.ly/3QF6nb0
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Recovering PDEs and Classical Solutions

➤ Consider L = dψ with coordinates
(xi, ∂iψ) for some ψ ∈ C ∞(Rm).

➤ Trivially Lagrangian for canonical ω as
ω|dψ = 0.

➤ The condition α|dψ = 0 corresponds to a
MA equation, with classical solution ψ.
[Lychagin 1979]

➤ The projection π : L→ Rm is a
diffeomorphism.

https://bit.ly/3kgbhz6
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More on Generalised Solutions

Pathologies of a generalised solution L:

➤ When π : L→ Rm is not surjective
(ψ is not defined on the whole domain).

➤ When π : L→ Rm is not injective
(ψ is a multivalued solution).
[Vinogradov 1973]

➤ When π : L→ Rm is not immersive —
Arnold’s Singularities.

https://bit.ly/3MWzqXN
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2. Vorticity and the Poisson Equation for Pressure
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The Importance of Vortices

➤ Turbulent flows consist of complex
interactions of vortex structures.

➤ In 2D, they combine as they evolve,
forming stable coherent structures
characterised by circulation/elliptic
motion.

➤ In 3D, one finds knotted/linked tubes
which accumulate at small scale.
“sinews of turbulence.”
[Moffatt et al. 1994]

Vorticity of evolving 2d turbulence
at early time

(Andrey Ovsyannikov - Ecole
Centrale de Lyon)

https://bit.ly/3W8nxyH
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Pressure, Vorticity, and Strain

➤ Homogeneous, Incompressible Navier–Stokes on Rm

∂vi

∂t
= −vj∇jv

i −∇ip+ ν∆vi (−ci) .

∇iv
i = 0

➤ Taking the divergence and applying ∇iv
i = 0 one finds

∆p (+∇ic
i) = ζijζ

ij − SijS
ij .

where ζij =
1
2
(∇jvi −∇ivj) and Sij =

1
2
(∇jvi +∇ivj).

➤ Vorticity term dominates ⇔ ∆p > 0.
Strain term dominates ⇔ ∆p < 0.
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Vorticity, Divergence, and Strain

Based on Figure from Clough et al. 2014

(ζij)2D =
1

2

(
0 ζ

−ζ 0

)
(ζij)3D =

1

2

 0 ζ3 −ζ2
−ζ3 0 ζ1
ζ2 −ζ1 0


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The Pressure Equation

(This) equation for the pressure is by no means fully understood and
locally holds the key to the formation of vortex structures through the
sign of the Laplacian of the pressure. In this relation... may lie a deeper
knowledge of the geometry of both the Euler and Navier–Stokes
equations.” [Gibbon 2008]

∆p = ζijζ
ij − SijS

ij

https://bit.ly/3H5Dfqo


BIMSA Integrable
Systems Seminar

Lewis Napper

1. Recap of
Monge–Ampère
Geometry

2. Vorticity and the
Poisson Equation for
Pressure

3. Monge–Ampère
Geometry of 2D
Incompressible Flows

4. (Higher)
Monge–Ampère
Geometry of 3D
Incompressible Flows

5. Summary and
Outlook

Pressure Equation in Two Dimensions

➤ In 2D, one has a stream function v1 = −ψy and v2 = ψx.

➤ Pressure equation is a MA equation for the stream function

∆p

2
=

(
ψxxψyy − ψ2

xy

)
.

➤ Vorticity dominates ⇔ ∆p > 0 ⇔ Elliptic equation.
Strain dominates ⇔ ∆p < 0 ⇔ Hyperbolic equation.
No dominance ⇔ ∆p = 0 ⇔ Parabolic equation.
[Weiss 1991, Larchevêque 1993]

https://bit.ly/3WphM01
https://bit.ly/3kgLTJk
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Monge–Ampère Equations in Two Dimensions

The ω-effective MA forms for 2D background (4D phase space) are

α = A dq1 ∧ dx2 +B (dx1 ∧ dq1 + dq2 ∧ dx2)

+ C dx1 ∧ dq2 +D dq1 ∧ dq2 + E dx1 ∧ dx2

.
Imposing that α|dψ = 0 yields (x1 = x, x2 = y, and qi = ∂iψ)

Aψxx + 2Bψxy + Cψyy +D
(
ψxxψyy − ψ2

xy

)
+ E = 0

This correspondence is a bijection – unique MA form in ω-effective class.
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Monge–Ampère Equations in Two Dimensions

➤ (Hodge–Lepage–Lychagin) Any β ∈ Ω2(T ∗R2) can be written

β = α + F (x, q)ω

for symplectic form ω and some ω-effective form α.

➤ β is only ω-effective when F ≡ 0 so this is an equivalence relation.

➤ If ω|dψ = 0, then α|dψ = β|dψ – They give the same equation!

➤ Effective forms remove redundancy from linear combinations
(still have multiples of α giving equivalent equations).
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Monge–Ampère Equations in Two Dimensions

➤ The Pfaffian is defined by α ∧ α =: fω ∧ ω
where f = AC −B2 −DE is the determinant of the linearisation
matrix for our PDE.

➤ Hence, the MA equation α|dψ = 0 is

elliptic ⇔ f > 0.
hyperbolic ⇔ f < 0.
parabolic ⇔ f = 0.
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The Lychagin–Rubtsov Theorem and Equivalence

➤ Define the endomorphism of vector fields
J : X(T ∗R2) → X(T ∗R2) by

1√
|f |
α(· , ·) =: ω(J · , ·)

➤ Almost complex (J2 = −1) ⇔ f > 0
Almost para-complex (J2 = +1) ⇔ f < 0
[Lychagin et al. 1993]

https://bit.ly/3CLVqPk
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The Lychagin–Rubtsov Theorem and Equivalence

➤ Two MA forms (hence equations) α1, α2 are locally equivalent if
there exists a local symplectomorphism
F : (T ∗R2, ω, α1) → (T ∗R2, ω, α2) such that F ∗α2 = α1.

➤ The Lychagin–Rubtsov theorem states t.f.a.e:

☞ d( 1√
|f |
α) = 0.

☞ α|dψ = 0 is locally equivalent to ∆ψ = 0 or □ψ = 0.
☞ J is integrable.
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Geometry of the 2D Poisson Equation

One can recover the pressure equation

∆p

2
=

(
ψxxψyy − ψ2

xy

)
by choosing the MA form [Roulstone et al. 2009]

α = dq1 ∧ dq2 − fdx1 ∧ dx2 ,

with Pfaffian given by

f =
∆p(x, y)

2
.

https://bit.ly/3CLFk8j
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The Pfaffian of the 2D Poisson Equation

➤ So 2f = ∆p gives a geometric justification for the Poisson equation
being:

elliptic ⇔ ∆p > 0.
hyperbolic ⇔ ∆p < 0.
parabolic ⇔ ∆p = 0.

➤ By Lychagin–Rubtsov Theorem,

∆p

2
= (ψxxψyy − ψ2

xy)

is locally equivalent to ∆ψ = 0 or □ψ = 0 iff ∆p is constant.
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The Lychagin–Rubtsov Metric

➤ For a choice of (non-degenerate, ω- and α-effective)
K ∈ Ω2(T ∗R2), we can define a symmetric, bilinear form

ĝ(· , ·) := −K(J · , ·)

called the Lychagin–Rubtsov (LR) metric. [Roulstone et al. 2001]

➤ There exists a choice of K s.t. the metric in (xi, qi) coordinates is

ĝ =

(
fI 0

0 I

)
with signature dictated by the sign of f .

https://bit.ly/3Xs1lkq
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LR Metric for the 2D Poisson Equation

The LR metric on T ∗R2 given by

ĝ =

(∆p
2
I 0

0 I

)
is

Riemannian ⇔ ∆p > 0.
Kleinian ⇔ ∆p < 0.

Degenerate ⇔ ∆p = 0.

N.B. These degeneracies correspond to singularities of the scalar
curvature — they persist under coordinate changes.
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Pull-back LR Metric for the 2D Poisson Equation

➤ The pull-back of the LR metric ĝ to a classical solution L = dψ is

ĝ|dψ = ζ

(
ψxx ψxy
ψxy ψyy

)
where ζ = ∆ψ.

➤ Degenerate when ζ = 0 or ∆p = 0.
Riemannian when ∆p > 0.
Kleinian when ∆p < 0.

➤ Degeneracy when ζ = 0 not always curvature singularity.
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Geometry of the 2D Poisson Equation

∆p > 0 < 0 = 0

Dominance Vorticity Strain None

α|dψ = 0 Elliptic Hyperbolic Parabolic

f > 0 < 0 = 0

J2 −1 1 Singular

ĝ Riemannian (4, 0) Kleinian (2, 2) Degenerate

ĝ|dψ Riemannian (2, 0) Kleinian (1, 1)* Degenerate

*Except when ζ = 0, in which case it is degenerate.
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Topology of 2D Vortices

➤ For simply connected regions Σ of 2D flows on which ∆p > 0 and
with boundary given by a closed stream-line, all streamlines within
Σ are also closed (and convex). [Larchevêque 1993]

➤ Σ is topologically a disc [χ(Σ) = χ(dψ(Σ)) = 1] and Gauß–Bonnet
theorem in dψ(M) is:∫

dψ(∂Σ)

ds κ(x(s)) = 2π −
∫
dψ(Σ)

voldψ(Σ)R

➤ The mean curvature of the boundary of a ‘vortex’ is described by
gradients of vorticity and strain.
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2D ABC Flow: ψ(x, y) = 3
2 cos(y) + sin(x)
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Velocity and Divergence in 2D

➤ Rather than working with the stream function in 2D, work with
velocity directly. Consider L with coordinates (xi, vi(x)).

➤ α|L = 0 gives Poission equation for pressure in terms of vorticity
and strain, but now ω|L = 0 implies vanishing vorticity.

➤ Use a different symplectic form:

ϖ = dqi ∧ ⋆dxi

= dq1 ∧ dx2 − dq2 ∧ x1

whose pull-back to L gives ∇iv
i = 0.
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Jacobi Systems in 2D

➤ Having α|L = 0 and ϖ|L = 0 simultaneously is equivalent to

∇ · v = 0

det(J(v, x)) = 1
2
∆p

➤ This is a Jacobi System – first order system of PDEs with
nonlinearity given by determinant of Jacobian or its minors.

➤ These are studied in 2D where they generalise Monge–Ampère
Equations and Cauchy–Riemann Systems.
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Higher Monge–Ampère Problems/Jacobi Systems

➤ A k-Plectic Form is a closed and non-degenerate
ϖ ∈ Ωk+1(T ∗Rm). [Cantrijn et al. 2009]

➤ Consider structures of form (T ∗Rm, ϖ, α) where ϖ is
(m− 1)-plectic (no effectiveness condition).

➤ Generalised solutions are now submanifolds L ↪→ T ∗Rm satisfying
ϖ|L = 0 and α|L = 0 (not necessarily Lagrangian).

➤ We focus on L with coordinates (xi, vi(x)), diffeomorphic to Rm, in
lieu of classical solutions.

https://bit.ly/3H5xSHt
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Almost (Para-)Complex Structure in 3D

➤ Original definition of J in 2D uses a pair of 2-forms. Need an
alternative for higher dimensions, i.e. 3D.

➤ The Hitchin Isomorphism Φ : Ω5(T ∗R3) → X(T ∗R3)⊗ Ω6(T ∗R3)
lets us define endomorphisms [Hitchin. 2000]

A : X(T ∗R3) → X(T ∗R3); A(X)vol = Φ(ιXα ∧ α)

for X ∈ X(T ∗R3) and choices of α ∈ Ω3(T ∗R3) and vol.

➤ The Hitchin Pfaffian of α is then f = 1
6
tr(A2) and J := 1√

|f |
A.
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Lychagin–Rubtsov Metric in Higher Dimensions

➤ Again, for some choice of K ∈ Ω2(T ∗Rm), we can define the
Lychagin–Rubtsov metric

ĝ(· , ·) := −K(J · , ·)

➤ The analogous choice to 2D again gives

ĝ =

(
fIm 0

0 Im

)
in (xi, qi) coordinates, with signature dictated by the sign of the
Hitchin Pfaffian f .
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Metrics from Previous Seminars

➤ Results of [Banos. 2002] show that in 3D, for our choice of K, this
is (conformally) equivalent to:

ĝ(X, Y ) =
(ιXα) ∧ (ιXα) ∧ ω

ω3

➤ In the 2D literature, the metric

ĝ =
2 [(ιXω) ∧ (ιY α) + (ιY ω) ∧ (ιXα)] ∧ dx1 ∧ dx2

ω ∧ ω

also appears, but is not in general equivalent to our choice of K.
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Setup for Higher Dimensional Fluids

In higher dimensions, the forms ϖ, α from 2D generalise to

ϖ = dqi ∧ ⋆ dxi

α = 1
2
dqi ∧ dqj ∧ ⋆ (dxi ∧ dxj)− 1

2
∆p volm

When pulled back to L with coordinates (xi, vi(x)), they give

∇iv
i = 0

∆p = ζijζ
ij − SijS

ij

the divergence free equation and Poisson equation respectively.
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LR Metric for Higher Dimension Fluids

➤ The (Hitchin) Pfaffian is again f = 1
2
∆p and the LR metric is

ĝ =

(∆p
2
Im 0

0 Im

)
.

➤ For Aij = ∇jvi, the pullback metric is

(ĝ|L)ij = AkiAkj − 1
2
δijAklA

lk .

➤ In general, signature change of ĝ|L does not coincide with sign
change in f — more complicated relationship.
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Topology of 3D Vortices

➤ No Gauss–Bonnet Theorem in odd dimensions – how to extract
topological information?

➤ Let θ = qidx
i be the tautological form. Then the helicity density is

(θ ∧ ω)|L = viζ
idx1 ∧ dx2 ∧ dx3

➤ Under ideal conditions, helicity is an invariant quantity and vorticity
is conserved.

➤ Helicity can be related to topological quantities from knot theory
i.e. the Gauss linking number, Călugăreanu invariant, and Jones
Polynomial [Liu and Ricca 2012, Ricca and Moffatt 1992].
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Extension to Riemannian Manifold

➤ On a Riemannian manifold (M, g), the
approach is broadly the same:

∆p+Rijv
ivj (+∇ic

i) = ζijζ
ij − SijS

ij .

➤ Schematically take
dqi → dqi − dxjΓij

kqk.
I → g.
f = 1

2
∆p→ f = 1

2
(∆p+Rijqiqj).

➤ Geometric justification for Weiss criterion
for equation type still applies on a manifold,
e.g. S2 [Napper et al. 2023].

Navier–Stokes equations in
spherical geometry describe
ocean/atmosphere dynamics

(Joshua Stevens - NASA Earth
Observatory)
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3D Flows with Symmetry

➤ 2.5D Euclidean flows flows have velocity [Ohkitani et al. 2000]

v :=
(
v1(x

1, x2, t), v2(x
1, x2, t), zγ(x1, x2, t) +W (x1, y2, t)

)
➤ We have a 1D symmetry generated by

– ∂x3 ∈ X(R3) when γ ≡ 0.
– ∂x3 + γ∂q3 ∈ X(T ∗R3) when W = cγ for some c ∈ R.

➤ Shown that for Burgers’ Vortex (W ≡ 0, γ = γ(t)),
symplectic reduction reproduces Lundgren’s Transformation and
yields a 2D (compressible) flow [Banos et al. 2016].

➤ Explicitly extended to γ ≡ 0 in [Napper et al. 2023]
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3D Flows with Symmetry

➤ These symmetries also apply to background manifolds with metric
g = g2 + e−2φdx3 ⊗ dx3 where φ ∈ C∞(R3)

➤ Symplectic reduction yields pressure and compressibility equations
for v1, v2 in terms of ϖ and v3, i.e.

∇iv
i = −vi∂iφ

and an LR metric on the reduced phase space (T ∗R2).

➤ Also have access to 2-plectic reduction [Blacker. 2021] which
directly gives vi in terms of a stream function ψ

vi = −e−φϵij∇jψ
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5. Summary and Outlook
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Summary

➤ We have recapped the concepts of Monge–Ampère structures and
their associated geometry as a tool for studying MA PDEs.

➤ We applied this tool to the pressure equation in 2D and showed that
the signatures of the LR metric and its pull-back act as diagnostics
for equation type and the dominance of vorticity and strain.

➤ We discussed generalisations to higher dimensions and manifolds
with curvature, providing geometric validation for Weiss-Okubo like
criterion in these cases.
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Outlook

➤ We looked at (locally) classical solutions – what happens if we
allow fully generalised solutions with non-immersive projections?

➤ In semi-geostrophic theory, these produce degeneracy of ĝ|L and
type change, which represent weather fronts.
[D’Onofrio et al. 2023]

➤ The geometry of classical solutions models flows with elliptic
vortices, vortex tubes, and lines. Perhaps singular locus of
projections could be used to model vortex sheets.

https://arxiv.org/abs/2209.13337
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Outlook

➤ Recall that we made a choice of differential form K ∈ Ω2(T ∗M)
when defining the metric ĝ (whole family of LR metrics)

➤ In 2D, (ω, α,K) induce an almost hyper-complex triple
[Roulstone, Rubtsov. 2001].

➤ For our choice of K, (anti-)self duality of the curvatures of ĝ
implies integrability properties of the triple and lets us map to
twistor space [Ongoing work].

➤ The diagonal form of our LR metric reminds of the scaled Sasaki
metrics, whose associated structures have been studied in detail.
[Gezer et al. 2014].

https://bit.ly/40w3pKh
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Thank you!

Any questions?
(Image Credit [Kushner, Lychagin, Rubtsov. 2007])


	1. Recap of Monge–Ampère Geometry
	2. Vorticity and the Poisson Equation for Pressure
	3. Monge–Ampère Geometry of 2D Incompressible Flows
	4. (Higher) Monge–Ampère Geometry of 3D Incompressible Flows
	5. Summary and Outlook

